Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T11:08:33.372Z Has data issue: false hasContentIssue false

Role of Microstructure in Promoting Fracture and Fatigue Resistance in Mo-Si-B Alloys

Published online by Cambridge University Press:  26 February 2011

J. J. Kruzic*
Affiliation:
Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, U.S.A.
J. H. Schneibel
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, TN 37831, U.S.A.
R. O. Ritchie
Affiliation:
Department of Materials Science and Engineering, University of California, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
*
* Tel: +1–541–737–7027; fax: +1–541–737–2600. E-mail address: jamie.kruzic@oregonstate.edu
Get access

Abstract

An investigation of how microstructural features affect the fracture and fatigue properties of a promising class of high temperature Mo-Si-B based alloys is presented. Fracture toughness and fatigue-crack growth properties are measured at 25° and 1300°C for five Mo-Mo3Si-Mo5SiB2 containing alloys produced by powder metallurgy with α-Mo matrices. Results are compared with previous studies on intermetallic-matrix microstructures in alloys with similar compositions. It is found that increasing the α-Mo phase volume fraction (17 – 49%) or ductility (by increasing the temperature) benefits the fracture resistance; in addition, α-Mo matrix materials show significant improvements over intermetallic-matrix alloys. Fatigue thresholds were also increased with increasing α-Mo phase content, until a transition to more ductile fatigue behavior occurred with large amounts of α-Mo phase (49%) and ductility (i.e., at 1300°C). The beneficial role of such microstructural variables are attributed to the promotion of the observed toughening mechanisms of crack trapping and bridging by the relatively ductile α-Mo phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, M. K., Kramer, M. J., and Akinc, M., Intermetallics 4, 273 (1996).Google Scholar
2. Meyer, M. K. and Akinc, M., J. Am. Ceram. Soc. 79 (10), 2763 (1996).Google Scholar
3. Meyer, M. K., Thom, A. J., and Akinc, M., Intermetallics 7, 153 (1999).Google Scholar
4. Akinc, M., Meyer, M. K., Kramer, M. J., Thom, A. J., Heubsch, J. J., and Cook, B., Mater. Sci. Eng. A261 (1–2), 16 (1999).Google Scholar
5. Berczik, D. M., United States Patent No. 5,595,616 (1997).Google Scholar
6. Berczik, D. M., United States Patent No. 5,693,156 (1997).Google Scholar
7. Schneibel, J. H., Tortorelli, P. F., Kramer, M. J., Thom, A. J., Kruzic, J. J., and Ritchie, R. O., in Defect Properties and Related Phenomena in Intermetallic Alloys, edited by George, E. P., Mills, M. J., Inui, H., and Eggeler, G. (Materials Research Society, Warrendale, PA, 2003), Vol. 753, pp. 5358.Google Scholar
8. Schneibel, J. H., Ritchie, R. O., Kruzic, J. J., and Tortorelli, P. F., Metall. Mater. Trans. 36A, in press (2005).Google Scholar
9. Kruzic, J. J., Schneibel, J. H., and Ritchie, R. O., Scripta Mater. 50, 459 (2004).Google Scholar
10. Schneibel, J. H., Liu, C. T., Easton, D. S., and Carmichael, C. A., Mater. Sci. Eng. A261 (1–2), 78 (1999).Google Scholar
11. Supatarawanich, V, Johnson, D. R., and Liu, C. T., Mater. Sci. Eng. A344 (1–2), 328 (2003).Google Scholar
12. Schneibel, J. H., Intermetallics 11 (7), 625 (2003).Google Scholar
13. Gilbert, C. J., McNaney, J. M., Dauskardt, R. H., and Ritchie, R. O., J. Test. Eval. 22 (2), 117 (1994).Google Scholar
14. Chen, D., Gilbert, C. J., and Ritchie, R. O., J. Test. Eval. 28 (4), 236 (2000).Google Scholar
15. ASTM E647–00 in Annual Book of ASTM Standards, Vol. 03.01: Metals- Mechanical Testing; Elevated and Low-temperature Tests; Metallography (ASTM, West Conshohocken, Pennsylvania, USA, 2002), pp. 595635.Google Scholar
16. Venkateswara Rao, K.T., Soboyejo, W. O., and Ritchie, R. O., Metall. Trans. 23A, 2249 (1992).Google Scholar
17. Rosales, I. and Schneibel, J. H., Intermetallics 8, 885 (2000).Google Scholar
18. Ritchie, R. O., Int. J. Fract. 100 (1), 55 (1999).Google Scholar
19. Choe, H., Chen, D., Schneibel, J. H., and Ritchie, R. O., Intermetallics 9, 319 (2001).Google Scholar
20. Choe, H., Schneibel, J. H., and Ritchie, R. O., Metall. Mater. Trans. 34A, 25 (2003).Google Scholar