Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:10:52.924Z Has data issue: false hasContentIssue false

Scaling Analysis of a- and poly-Si Surface Roughness by Atomic Force Microscopy

Published online by Cambridge University Press:  03 September 2012

T. Yoshinobu
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567, Japan
A. Iwamoto
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567, Japan
K. Sudoh
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567, Japan
H. Iwasaki
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567, Japan
Get access

Abstract

The scaling behavior of the surface roughness of a-and poly-Si deposited on Si was investigated by atomic force microscopy (AFM). The interface width W(L), defined as the rms roughness as a function of the linear size of the surface area, was calculated from various sizes of AFM images. W(L) increased as a power of L with the roughness exponent ∝ on shorter length scales, and saturated at a constant value of on a macroscopic scale. The value of roughness exponent a was 0.48 and 0.90 for a-and poly-Si, respectively, and σ was 1.5 and 13.6nm for 350nm-thick a-Si and 500nm-thick poly-Si, respectively. The AFM images were compared with the surfaces generated by simulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vicsek, T., Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
2. Krug, J. and Spohn, H., in Solids Far From Equilibrium: Growth, Morphology and Defects, ed. Godriche, C. (Cambridge University Press, Cambridge, 1990) pp. 479582.Google Scholar
3. Family, F. and Vicsek, T., eds., Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).Google Scholar
4. Bunde, A., Havlin, S., eds., Fractals in Science (Springer-Verlag, Berlin, 1994).Google Scholar
5. Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, New York, 1982).Google Scholar
6. Mandelbrot, B. B., Phys. Scr. 32, 257 (1985).Google Scholar
7. He, Y. -L., Yang, H. -N., Lu, T. -M. and Wang, G. -C., Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
8. Tong, W. M., Williams, R. S., Yanase, A., Segawa, Y. and Anderson, M. S., Phys. Rev. Lett. 72, 3374 (1994).Google Scholar
9. Kardar, M., Parisi, G. and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
10. Amar, J. G. and Family, F., Phys. Rev. A 41, 3399 (1990).Google Scholar
11. Kahanda, G. L. M. K. S., Zou, X. -Q., Farrell, R. and Wong, P. -z., Phys. Rev. Lett. 68, 3741 (1992).Google Scholar
12. Vdzquez, L., Salvarezza, R. C., OcOn, P., Herrasti, P., Vara, J. M. and Arvia, A. J., Phys. Rev. E 49, 1507 (1994).Google Scholar
13. Palasantzas, G., Phys. Rev. B 49, 10544 (1994).Google Scholar
14. Iwasaki, H. and Yoshinobu, T., Phys. Rev. B 48, 8282 (1993).Google Scholar
15. Iwamoto, A., T. Yoshinobu and Iwasaki, H., Phys. Rev. Lett. 72, 4025 (1994).Google Scholar
16. Yoshinobu, T., Iwamoto, A. and Iwasaki, H., Jpn. J. Appl. Phys. 33, L67 (1994).Google Scholar