Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:57:33.476Z Has data issue: false hasContentIssue false

Search for Explaining the Staebler-Wronski Effect

Published online by Cambridge University Press:  15 February 2011

Get access

Abstract

For twenty years we searched to understand the Staebler-Wronski effect (SWE). New results continue to emerge which invalidate prior interpretations. Recent evidence shows that the SWE is not associated with impurities. Long-range hydrogen diffusion is ruled out because the SWE occurs with comparable efficiency between 400K and the lowest temperatures. Nonradiative geminate recombinations might be important since high fields reduce the SWE significantly. It disappears when the bandgap or the photon energy falls below a critical value. The creation of a metastable density of dangling bond defects has been considered to be its sole manifestation. However, there is mounting evidence for light-induced structural changes which extend throughout the material. The weak bond breaking model emerges as the only viable explanation of the SWE if the expected spatial correlation between defects and hydrogen is destroyed by subsequent recombination events. The SWE is reduced by a favorable microstructure and low hydrogen content. It is suggested that defect pairs have larger recombination coefficients than isolated defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D.L., Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977); J. Appl. Phys. 51, 3262 (1980).Google Scholar
2. den Boer, W., Geerts, M.J., Ondris, M., Wentinick, H.M., J. Non-Cryst. Solids 60, 268 (1984).Google Scholar
3. Pfleiderer, H., Kusian, W., Krühler, W., Solid State Commun. 49, 493 (1984).Google Scholar
4. Wagner, C., Gangopadhyay, S., Schröder, B., Geiger, J., AIP Conf. Proc. 157, 46 (1987).Google Scholar
5. Street, R.A., Kakalios, J., Tsai, C.C., Hayes, T.M., Phys. Rev. B35, 1316 (1987).Google Scholar
6. Jackson, W.B., Moyer, M.D., Phys. Rev. B36, 6217 (1987).Google Scholar
7. Nickel, N., Fuhs, W., Mell, H., J. Non-Cryst. Solids 115, 159 (1989).Google Scholar
8. Jackson, W.B., Marshall, J.M., Moyer, M.D., Phys. Rev. B39, 1164 (1989).Google Scholar
9. Kakalios, J. in Semiconductors and Semimetals Vol. 34, edited by Pankove, J.I. (Academic Press, New York, 1991) p. 381.Google Scholar
10. Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys. Rev. B32, 23 (1985).Google Scholar
11. Yamasaki, S., Isoya, J., J. Non-Cryst. Solids 164–166, 169 (1993).Google Scholar
12. Stradins, P., Fritzsche, H., Phil. Mag. B69, 121 (1994).Google Scholar
13. Zhang, Q., Takashima, H., Zhou, J.-H., Kumeda, M., Shimizu, T., MRS Conf. Proc. 336, 269 (1994).Google Scholar
14. Ishii, N., Kumeda, M., Shimizu, T., Jpn. J. Appl. Phys. 24, L244 (1985).Google Scholar
15. Redfield, D., Appl. Phys. Lett. 52, 493 (1989);Google Scholar
Redfield, D., Bube, R.H., J. Non-Cryst. Solids 137 & 138, 215 (1991).Google Scholar
16. Adler, D., Solar Cells 9, 133 (1983).Google Scholar
17. Adler, D., J. de Physique (Paris) 42, C43 (1981).Google Scholar
18. Pantelides, S.T., Phys. Rev. Lett. 57, 2979 (1986).Google Scholar
19. Yamasaki, S., Umeda, T., Isoya, J., Matsuda, A., Tanaka, K., Mat. Res. Soc. Symp. Proc. 420, 587 (1996).Google Scholar
20. Nakata, M., Wagner, S., Peterson, T.M., J. Non-Cryst. Solids 164–166, 179 (1993).Google Scholar
21. Kamei, T., Hata, N., Matsuda, A., Uchiyama, T., Amano, S., Tsukamoto, K., Yoshioka, Y., Hirao, T., Appl. Phys. Lett. 68, 2380 (1996).Google Scholar
22. Stutzmann, M., Nebel, C.E., Encycl. of Appl. Phys. (VCH Publ.) 18, 151 (1997).Google Scholar
23. Stradins, P., Tran, M.Q., Fritzsche, H., J. Non-Cryst. Solids, 164–166, 175 (1993).Google Scholar
24. Stradins, P., Fritzsche, H., J. Non-Cryst. Solids 198–200, 432 (1996).Google Scholar
25. Redfield, D., Mat. Res. Soc. Symp. Proc. 377, 383 (1995).Google Scholar
26. Scholz, A., Schröder, B., Oechsner, H., Mat. Res. Soc. Symp. Proc. 336, 293 (1994).Google Scholar
27. Tzanetakis, P., Kopidakis, N., Androulidaki, M., Kalpouzos, C., Stradins, P., Fritzsche, H., J. Non-Cryst. Solids 198–200, 458 (1996).Google Scholar
28. Stradins, P., Fritzsche, H., Kopidakis, N., Tzanetakis, P., Mat. Res. Soc. Symp. Proc. 420, 765 (1996).Google Scholar
29. Skumanich, A., Fathallah, M., Amer, N.M., Appl. Phys. Lett. 54, 1887 (1989).Google Scholar
30. Fathallah, M., Phil. Mag. B61, 403 (1990).Google Scholar
31. Yin, X., Raikh, M.E., Taylor, P.C., Mat. Res. Soc. Symp. Proc. 377, 167 (1995).Google Scholar
32. Fritzsche, H., Solid State Commun. 94, 953 (1995).Google Scholar
33. Han, D., Fritzsche, H., J. Non-Cryst. Solids 59 & 60, 397 (1983).Google Scholar
34. Shepard, K., Smith, Z.E., Aljishi, S., Wagner, S., Appl. Phys. Lett. 53, 1644 (1988).Google Scholar
35. Shimizu, T., Iwami, M., Okagawa, T., Morimoto, A., Kumeda, M., Mat. Res. Soc. Symp. Proc. 258, 455 (1992);Google Scholar
Zhang, Q., Takashima, H., Zhou, J.-H., Kumeda, M., Shimizu, T., Mat. Res. Soc. Symp. Proc. 336, 269 (1994).Google Scholar
36. Mariucci, L., Sinno, G., Minahni, C., Mittiga, A., J. Non-Cryst. Solids 198–200, 482 (1996).Google Scholar
37. Wang, Q., Zhu, J., Xie, C., Tao, W., Zhang, X., Bai, G., Phil. Mag. B61, 437 (1990).Google Scholar
38. Zhang, Q., Kumeda, M., Shimizu, T., Jpn. J. Appl. Phys. 32, L371 (1993).Google Scholar
39. Stutzmann, M., Nunnekamp, J., Brandt, M.S., Asano, A., Phys. Rev. Lett. 67, 2347 (1991).Google Scholar
40. Meaudre, R., Vignoli, S., Meaudre, M., Chanel, L., Phil. Mag. Lett. 68, 159 (1993).Google Scholar
41. Yoon, J.H., Kim, H.L., Mat. Res. Soc. Symp. Proc. 377, 373 (1995).Google Scholar
42. Norberg, R.E., Bodart, J., Corey, R., Fedders, P.A., Paul, W., Turner, W.A., Pang, D., Wetsel, A., Mat. Res. Soc. Symp. Proc. 258, 377 (1992).Google Scholar
43. Hari, P., Taylor, P.C., Street, R.A., Mat. Res. Soc. Symp. Proc. 336, 329 (1994).Google Scholar
44. Masson, D.P., Ouhlal, A., Yelon, A., J. Non-Cryst. Solids 190, 151 (1995).Google Scholar
45. Zhao, Y., Zhang, D., Kong, G., Pan, G., Liao, X., Phys. Rev. Lett. 74, 558 (1995).Google Scholar
46. Kong, G. (private communications).Google Scholar
47. Fan, J., Kakalios, J., Phil. Mag. B69, 595 (1994).Google Scholar
48. Hata, N., Kamei, T., Okamoto, H., Matsuda, A., this MRS symposium, 1997.Google Scholar
49. Hauschildt, D., Fuhs, W., Mell, H., Phys. Stat. Sol. (b) 111, 171 (1982).Google Scholar
50. Jackson, W.B., Kakalios, J. in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1988) p. 247.Google Scholar
51. Godet, C., Roca, P. Cabarrocas, i, Mat. Res. Soc. Symp. Proc. 420, 647 (1996).Google Scholar
52. Godet, C., Morin, P., Roca, P. Cabarrocas, i, J. Non-Cryst. Solids 198–200, 449 (1996).Google Scholar
53. Darwich, D., Roca, P. Cabarrocas, i, Vallon, S., Ossikovski, R., Morin, P., Zellama, K., Phil. Mag. B72, 363 (1995).Google Scholar
54. Xu, X., Yang, J., Guha, S., J. Non-Cryst. Solids 198–200, 60 (1996).Google Scholar
55. Williamson, D.L., Mat. Res. Soc. Symp. Proc. 377, 251 (1995).Google Scholar
56. Sugiyama, S., Yang, J.C., Guha, S., Appl. Phys. Lett. 70, 378 (1997), and this MRS Symp. Proc., 1997.Google Scholar
57. Ganguly, G., Yamasaki, S., Matsuda, A., Phil. Mag. B63, 281 (1991).Google Scholar
58. Yang, Liyou, Chen, L., Hou, J.Y., Li, Y.M., Mat. Res. Soc. Symp. Proc. 258, 365 (1992).Google Scholar
59. Stutzmann, M., Appl. Phys. Lett. 56, 2313 (1990).Google Scholar
60. Krühler, W., Pfleiderer, H., Plattner, R., Stetter, W., AIP Conf. Proc. 120, 311 (1984).Google Scholar
61. Bauer, S., Haage, T., Schröder, B., Oechsner, H., J. Non-Cryst. Solids 198–200, 462 (1996).Google Scholar