Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T03:25:32.700Z Has data issue: false hasContentIssue false

Self-Peeling of Porous Nickel Foam from the Electrochemically Etched Porous Silicon

Published online by Cambridge University Press:  15 February 2011

Xi Zhang
Affiliation:
Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1595, U.S.A.
King-Ning Tu
Affiliation:
Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1595, U.S.A.
Get access

Abstract

A low-doped p-type silicon wafer was wet-etched to form macropores in a high-aspect-ratio, straight and parallel manner along the Si (100) direction. It was then plated in aqueous alkaline solution containing Ni2+. Metallic Ni was rapidly deposited in the macropores on the sidewall surface without using a reducing agent or activation treatment at slightly elevated temperature. After being immersed for certain duration, the single crystalline Si of sidewalls was replaced by polycrystalline Ni while the initial porous structure was still maintained. When Ni became dominant in the entire porous regime, the porous film more than 200 μm thick was discovered to be able to peel off very easily from the Si substrate beneath. In this way, a piece of nickel foam with straight pores of very high aspect ratio is self-formed and self-peeled.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leroux, F., Koene, B. E., Nazar, L. F., J. Electrochem. Soc. 143, L181 (1996).Google Scholar
2. Ye, S., Vijh, A. K., Dao, L. H., J. Electrochem. Soc. 143, L7 (1996).Google Scholar
3. Pell, W. G. and Conway, B. E., J. Power Sources 63, 255 (1996).Google Scholar
4. Wang, J. and Agnes, L., Anal. Chem. 64, 456 (1992).Google Scholar
5. Sievenpiper, D. F., Yablonovitch, E., Winn, J. N., Fan, S., Villeneuve, P. R., Joannopoulos, J. D., Phys. Rev. Lett. 80, 2829 (1998).Google Scholar
6. Velev, O. D. and Kaler, E. W., Adv. Mater. 12 (7), 531534 (2000).Google Scholar
7. Kulinowski, K. M., Jiang, P., Vaswani, H., Colvin, V. L., Adv. Mater. 12 (11), 833838 (2000).Google Scholar
8. Yan, H. W., Blanford, C. F., Holland, B. T., Parent, M., Smyrl, W. H., Stein, A., Adv. Mater. 11, 1003 (199).Google Scholar
9. Jiang, P., Cizeron, J., Bertone, J. F., Colvin, V. L., J. Am Chem. Soc. 121, 7957 (1999).Google Scholar
10. Velev, O. D., Tessier, P. M., Lenhoff, A. M., Kaler, E. W., Nature 401, 548 (1999).Google Scholar
11. Attard, G. S., Bartlett, P. N., Coleman, N. R. B., Elliott, J. M., Owen, J. R., Wang, J. H., Science 278, 838 (1997).Google Scholar
12. Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
13. Masuda, H., Nishio, K., Baba, N., Thin Solid Films 223 (1), 13 (1993).Google Scholar
14. Lehmann, V., J. Electrochem. Soc. 140, 2836 (1993).; Thin Solid Films 297, 13 (1997).Google Scholar
15. Ponomarev, E. A. and Lévy-Clément, C., Electrochem. Solid State Lett. 1 (1), 4245 (1998).Google Scholar
16. Lehmann, V. and Rönnebeck, S., J. Electrochem. Soc. 146 (8), 29682975 (1999)Google Scholar
17. Chao, K. J., Kao, S. C., Yang, C. M., Hseu, M. S., Tsai, T. G., Electrochem. Solid State Lett. 3 (10), 489492 (2000).Google Scholar
18. Lust, S. and Lévy-Clément, C., J. Electrochem. Soc. 149 (6), C338–C344 (2002).Google Scholar
19. Nagahara, L., ohmori, T., Hashimoto, K., Fujishima, A., J. Vac. Sci. Technol. A 11, 763 (1993).Google Scholar
20. Niwano, M., Kondo, Y., Kimura, Y., J. Electrochem. Soc. 147 (4), 15551559 (2000).Google Scholar
21. Zhang, Xi and Tu, K. N., in preparation (unpublished).Google Scholar