Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T05:08:26.819Z Has data issue: false hasContentIssue false

Site Occupancies in Ternary C15 Ordered Laves Phases

Published online by Cambridge University Press:  15 February 2011

P. G. Kotula
Affiliation:
Materials Science and Technology Division, Mail Stop K765, Los Alamos National Laboratory, Los Alamos, NM 87545
I. M. Anderson
Affiliation:
Materials Science and Technology Division, Mail Stop K765, Los Alamos National Laboratory, Los Alamos, NM 87545
F. Chu
Affiliation:
Materials Science and Technology Division, Mail Stop K765, Los Alamos National Laboratory, Los Alamos, NM 87545
D. J. Thoma
Affiliation:
Materials Science and Technology Division, Mail Stop K765, Los Alamos National Laboratory, Los Alamos, NM 87545
J. Bentley
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P O Box 2008, Oak Ridge, TN 37831
T. E. Mitchell
Affiliation:
Materials Science and Technology Division, Mail Stop K765, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Site occupancies in three C15-structured AB2(X) Laves phases have been determined with Atom Location by CHanneling Enhanced MIcroanalysis (ALCHEMI). In NbCr2(V), the results are consistent with exclusive site occupancies of Nb for the A sublattice and Cr and V for the A sublattice. The B-site occupancy of V can be interpreted in terms of electronic structure. In NbCr2(Ti), the results are consistent with Ti partitioning mostly to the A sites with some anti-site defects likely. In HfV2(Nb), the results are consistent with Nb partitioning between the A and A sites. The results of the ALCHEMI analyses of these ternary C15 Laves phase materials are discussed with respect to previously determined phase diagrams and first-principles total energy and electronic structure calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Livingston, J. D. and Hall, E. L., J. Mater. Res. 5 (1) (1990) 5.Google Scholar
2. Fleischer, R. L. and Zabala, R. J., Met. Trans. A 21A (1990) 2149.Google Scholar
3. Takeyama, M. and Liu, C. T., Mater. Sei. Eng. A132 (1991) 61.Google Scholar
4. Thoma, D. J. and Perepezko, J. H., Mater. Sei. Eng. A156 (1992) 97.Google Scholar
5. Chu, F. and Pope, D. P., Mater. Sci. Eng. A170, (1993) 39.Google Scholar
6. Kumar, K. S. and Miracle, D. B., Intermetallics 2, (1994), 257274.Google Scholar
7. Vignoul, G. E., Tien, J. K., and Sanchez, J. M., Mater. Sci. Eng. A170, (1993) 177.Google Scholar
8. Takasugi, T., Yoshida, M., and Hanada, S., Acta Mater. 44 (1996) 669.Google Scholar
9. Kazantzis, A. V., Cheng, T. T., Aindow, M., and Jones, I. P., Proc. EMAG95 Bristol Inst, of Phys. Conf. Ser. 147 (11) (1995) 511.Google Scholar
10. Vonsovsky, S. V., Izyumov, Y. A., and Kurmaev, E. Z., Superconductivity of Transition Metals, Springer-Verlag, Berlin, 1982.Google Scholar
11. Chu, F., Chen, Z.W., Fuller, C.J., Lin, C.L., and Mihalisin, T., J. Appl. Phys. 79 (1996) 6405 Google Scholar
12. Aoki, K., Li, X.-G. and Masumoto, T., Acta Metall, et Mater. 40(2) (1992) 221.Google Scholar
13. Thoma, D. J. and Perepezko, J. H., J. Alloys Comp. 224 (1995) 330.Google Scholar
14. Chu, F., Thoma, D. J., Kotula, P. G., Gerstl, S., Mitchell, T. E., Anderson, I. M., and Bentley, J., in preparation.Google Scholar
15. Thoma, D.J. and Perepezko, J.H., in Morral, J.E., Schiffman, R.S., and Merchant, S.M. (eds.), Experimental Methods of Phase Diagram Determination, TMS, Warrendale, PA, 1994 p. 403.Google Scholar
16. Chu, F., Pope, D. P., Thoma, D. J., Lu, Y. C, Kotula, P. G. and Mitchell, T. E., in preparation.Google Scholar
17. Spence, J. C. H. and Taftø, J., J. Microscopy 130 (1983) 147.Google Scholar
18. Rossouw, C. J. et al., Phil. Mag. Lett. 60 (1989) 225.Google Scholar
19. Walls, M. G., Microsc. Microanal. Microstruct. 3 (1992) 443.Google Scholar
20. Anderson, I. M. and Bentley, J., Proc. 13th ICEM: Electron Microscopy 1994 1 (1994) 609.Google Scholar
21. Anderson, I.M. and Bentley, J., Proc. EMAG 95. Bristol: Inst. of Phys. Conf. 147 (1995).Google Scholar
22. All atomic radii for a coordination number of 12, Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, Wiley, New York, N.Y. (1972) p. 151.Google Scholar