Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:50:44.102Z Has data issue: false hasContentIssue false

Slow Relaxation in Polymeric Glasses by Two-Dimensional NMR

Published online by Cambridge University Press:  03 September 2012

Alan A. Jones
Affiliation:
Carlson School of Chemistry, Clark University, Worcester, Ma. 01610
P. T. Inglefield
Affiliation:
Carlson School of Chemistry, Clark University, Worcester, Ma. 01610
Y. H. Chin
Affiliation:
Carlson School of Chemistry, Clark University, Worcester, Ma. 01610
C. Zhang
Affiliation:
Carlson School of Chemistry, Clark University, Worcester, Ma. 01610
Get access

Extract

A variety of relaxation and recovery experiments on polymeric glasses indicate a complex response in either the time or frequency domain1. The behavior is far from that seen in simple liquids where relaxation can be characterized in terms of exponential decay and a single time constant or rate. A variety of more complicated mathematical functions have been employed in an attempt to match the observed relaxation behavior of polymeric glassesl. One of the more successful mathematical forms is the stretched exponential correlation2 function which can be used to characterize experimental observations obtained from mechanical, dielectric, thermodynamic and spectroscopic investigations3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McCrum, N. G., Read, B. E., and Williams, G., Anelastic and Dielectric Effects in Polymeric Solids, (John Wiley and Sons, New York, 1967).Google Scholar
2. Williams, G. and Watts, D. C., Trans. Faraday Soc. 66, 80 (1970).Google Scholar
3. Relaxations in Comples Systems, edited by Ngai, K. L. and Wright, G. B., (North Holland, Amsterdam, 1991).Google Scholar
4. Roessler, E. and Taupitz, M., Disorder Effects on Relaxation Processes, edited by Richert, and Blumen, (Springer-Verlag, Berlin, 1994) pp, 361383.Google Scholar
5. Schaefer, J., Stejskal, E. O., and Buchdahl, R., Macromolecules 10, 384 (1977).Google Scholar
6. Kaplan, J. I. and Garroway, A. N., J. Magn. Res. 49, 464 (1982).Google Scholar
7. Spiess, H. W., Colloid. Polym. Sci. 261, 13 (1983).Google Scholar
8. Shlesinger, M. F. and Montroll, M. F., Proc. Nati. Acad. Sci. U. S. A. 81, 1280 (1984).Google Scholar
9. Shlesinger, M. F., J. Stat. Phys. 36, 639 (1984).Google Scholar
10. Blumen, A., Zumdofen, G. and Klafter, J., J. Phys. Rev. B 30, 5379 (1984).Google Scholar
11. Schmidt-Rohr, K. and Spiess, H. W., Phys. Rev. Lett. 66, 3020 (1991).Google Scholar
12. Li, K.-L., Inglefield, P. T., Jones, A. A., Bendler, J. T. and English, A. D., Macromolecules, 21, 2940 (1988).Google Scholar
13. Li, K.-L., Jones, A. A., Inglefield, P. T. and English, A. D., Macromolecules 22, 4198 (1989).Google Scholar
14. Jackson, W. J. and Caldwell, J. R., Adv. Chem. Ser. No.48 185 (1965).Google Scholar
15. Kambour, R. P., Kelly, J. M., and McKinley, B. J., J. Polym. Sci. Polym. Phys. 27, 1979 (1989).Google Scholar
16. Cauley, B. J., Cipriani, C., Ellis, K., Roy, A. K., Jones, A. A., Inglefield, P. T., McKinley, B. J. and Kambour, R. P., Macromolecules 24, 403 (1991).Google Scholar
17. Liu, Y., Turnbull, M. M., Jones, A. A., Inglefield, P. T., and Kambour, R. P., Solid State NMR 2, 289 (1993).Google Scholar
18. Liu, Y., Inglefield, P. T., Jones, A. A. and Kambour, R. P., Mag. Reson. Chem., to appear.Google Scholar
19. Chiou, J. S. and Paul, D. R., J. Appl. Polym. Sci. 33, 2935 (1987).Google Scholar
20. Chin, Y. H., Zhang, C., Wang, P., Jones, A. A. and Inglefield, P. T., Macromolecules 25, 3031 (1991).Google Scholar
21. Chin, Y. H., Inglefield, P. T., and Jones, A. A., Macromolecules 26, 5372 (1993).Google Scholar
22. VanderHart, D. L., Macromolecules 27, 2837 (1994).Google Scholar