Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:08:31.376Z Has data issue: false hasContentIssue false

Sol-Gel Derived Pb(Zn1/3Nb2/3)O3-PbTiO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

G. Teowee
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
K. C. McCarthy
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
F. S. McCarthy
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
D. G. Davis Jr
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
J. T. Dawley
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
B.J.J. Zelinski
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
D. R. Uhlmann
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
Get access

Abstract

A series of sol-gel derived PB(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) films, with various PbTiO3 contents, have been prepared on platinized Si wafers. The (l-x)PZN - xPT films fired to 700C became single phase perovskite for x > 0.7. In the PZN-0.1PT films, the films still contain pyrochlore phase at a firing temperature of 850C; the perovskite phase appeared at a firing temperature of 800C. The dielectric constant increased with increasing PT content, with a peak in dielectric constant at x = 0.8. PZN-PT films with x = 0.8 exhibited dielectric constant, dissipation factor, remanent polarization and coercive field values of 600, 0.10, 6 and 45 kV/cm respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuwata, J., Uchino, K and Nomura, S., Ferroelectrics 22, 863 (1979).Google Scholar
2. Matsuo, Y., Sasaki, H., Hayakawa, S., Kanamaru, F. and Koizumi, M., Journal of The American Ceramic Society 52, 516 (1969).Google Scholar
3. Halliyal, A., Gururaja, T.R., Kumara, U. and Safari, A., IEEE 86, 437 (1986).Google Scholar
4. Wakiya, N., Ishizawa, N., Shinozaki, K. and Mitutani, N., Materials Reseach Bulletin 30, 1121 (1995).Google Scholar
5. Jang, H.M., Hoon Oh, S. and Moon, J.H., J. Am. Ceram. Soc. 75, 82 (1992).Google Scholar
6. Fujiu, T., Tanaka, A. and Takenaka, T., Japanese Journal of Applied Physics 30, L298 (1991).Google Scholar
7. Taniguchi, T., Kamisuki, Y. and Takenaka, T., Advanced Materials 14B, 1651 (1994).Google Scholar
8. Park, S. and Shrout, T.R., IEEE Ultrasonic Symposium 935 (1996).Google Scholar
9. Sada, T., Umezawa, C. and Uchino, K., Japanese Journal of Applied Physics 28, 46 (1989).Google Scholar
10. Mulvihill, M.L., Park, S., Risch, G., Li, Z., Uchino, K. and Shrout, T.R., Japanese Journal of Applied Physics 35, 3984 (1996).Google Scholar
11. Ling, H.C., Yan, M.F. and Rhodes, W.W., Journal of Materials Science 24, 541 (1989).Google Scholar
12. Sekar, M.A., Halliyal, A. and Patil, K.C., Ferroelectrics 158, 289 (1994).Google Scholar
13. Chang, Z.P., Bhalla, A.S. and Cross, L.E., Proc. 6th ISAF, 482 (1986).Google Scholar
14. Takenaka, T., Muramatsu, K. and Fujiu, T., Ferroelectrics 134, 133 (1992).Google Scholar
15. Udayakumar, K.R., Schuele, P.J., Chen, J., Brooks, K.G. and Cross, L.E., Mat. Res. Soc. Symp. Proc. 243, 469 (1992).Google Scholar
16. Hu, Y., Journal of Materials Science 31, 4255 (1996).Google Scholar
17. Wang, X., Huang, B. and Yao, X., Ferroelectrics 154, 301 (1994).Google Scholar