Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:59:08.881Z Has data issue: false hasContentIssue false

Structural and Electrical Effects on (A1-Si)/n+Si Ohmic Contact of in Situ Silicon Cleaning by Ar IONS Bombardment

Published online by Cambridge University Press:  25 February 2011

A. Santangelo
Affiliation:
Co.Ri.M.Me., Stradale Primosole 50, 95121 Catania, Italy;
P. Lanza
Affiliation:
Co.Ri.M.Me., Stradale Primosole 50, 95121 Catania, Italy;
O. Viscuso
Affiliation:
Co.Ri.M.Me., Stradale Primosole 50, 95121 Catania, Italy;
C. Magro
Affiliation:
ST Microelectronics, Stradale Primosole 50, 95121 Catania, Italy;
A. Scandurra
Affiliation:
C.N.R., I.Me.Te.M., c/o Dipartiraento di Scienze Chimiche, viale A. Doria 6, 95125 Catania, Italy;
A. Licciardello
Affiliation:
Dipartiraento di Scienze Chimiche Universital di Catania, viale A. Doria 6, 95125 Catania, Italy.
A. Torrisi
Affiliation:
Dipartiraento di Scienze Chimiche Universital di Catania, viale A. Doria 6, 95125 Catania, Italy.
Get access

Abstract

In situ etching of native Si02 by Ar+ ion bombardment before metal sputter deposition can increase the contact resistance of the metal-semiconductor contact. This is commonly attributed to surface contamination produced by various mechanisms or to etch-induced surface damage. In this paper, in order to elucidate the cause of the increase of contact resistance, we have studied (Al-Si)/n+Si contacts prepared by various treatments of the Si surface. We attribute the higher postalloy contact resistance of the sputter etched contacts to the existence of an Al doped layer which formation was induced by the preexisting disordered layer created by the Ar+ ion bombardment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Rabinzohn, P., Gautherin, G., Agius, B. and Cohen, C., J. Elettrochem. Soc. 131, 905 (1984).Google Scholar
2) Fonash, S.J., Solid State Technology, 4, 201 (1985).Google Scholar
3) Bean, J.C., Becker, G.E., Petroff, P.M. and Seidel, T.E., Journal of Applied Phisics, 48, 907 (1977).Google Scholar
4) Misra, D. and Easell, E.L., J. Electrochem. Soc., 134, 956 (1987).Google Scholar
5) Oehrlein, G.S., Tromp, R.M., Tsang, J.C., Lee, Y.H. and Petrillo, E.J., J. Electrochem. Soc., 132, 1441 (1985).Google Scholar
6) Oehrlein, G.S., Ranson, C.M., Chakravarti, S.N. and Lee, J.H., Appl. Phys. Lett., 46, 687 (1985).Google Scholar
7) Chang, J.S., in Plasma Processing, edited by Mathad, G.S., Schwartz, G.C. and Molinsky, G.S., (Electrochem. Soc. Proc., Pennington, N.J. 1983) p.114.Google Scholar
8) Fonash, S.J., Ashok, S. and Singh, R., Appl. Phys. Lett., 39, 5 (1981).Google Scholar
9) Singh, R. and Fonash, S.J., Appl. Phys. Lett., 43, 5 (1983).Google Scholar
10) Faith, T.J., O’Neill, J.J., Irven, R.S., Vassen, J.L., Shaw, J.M. and Thomas, J.H. III, J. Electrochem. Soc., 134, 665 (1987).Google Scholar
11) Cohen, S.S., Thin Solid Films, 105, 361 (1983).Google Scholar
12) Pramanik, D., Saxena, A.N., Solid State Techn., 3, 73 (1990).Google Scholar
13) Pramanik, D., Saxena, A.N., Solid State Techn., 3, 127 (1983)Google Scholar
14) Hung, L.S., Chen, S.H. and Mayer, J.W., in Layered Structures, Epitaxy and Interfaces, Gibson, J.M. and Dawson, L.R. eds.(Mat. Res. Soc. Proc 37 Pittsburg, PA 1985) p.337.Google Scholar
15) Chang, C.J., Fang, Y.K. and Sze, S.M., Solid State Electronics, 14, 541 (1971).Google Scholar