Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:10:40.171Z Has data issue: false hasContentIssue false

Structural and Spectroscopic Study of Manganese Silicide Islands on Silicon

Published online by Cambridge University Press:  17 March 2011

Miyoko Tanaka
Affiliation:
National Institute for Materials Science, Sakura, Tsukuba 305-0003, JAPAN
Qi Zhang
Affiliation:
National Institute for Materials Science, Sakura, Tsukuba 305-0003, JAPAN
Masaki Takeguchi
Affiliation:
National Institute for Materials Science, Sakura, Tsukuba 305-0003, JAPAN
Kazuo Furuya
Affiliation:
National Institute for Materials Science, Sakura, Tsukuba 305-0003, JAPAN
Get access

Abstract

The Mn deposited clean Si (111) substrates were examined with UHV-TEM and STM that are part of an UHV-TEM/STM integrated characterization system. The Mn deposition with coverages of 5-20 ML followed by annealing at 673 K formed MnSi islands with Moire fringes. They showed metallic character. Subsequent annealing at 873 K dissipated the islands instead of transforming them into MnSi1.7. The re-deposition of Mn and re-annealing at 473 K succeeded to transform MnSi islands into MnSi1.7. The islands had several orientation relationships with substrate Si, and were semiconducting. The growth mechanism of MnSi1.7 is inferred.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S. P., Silicides for VLSI applications (Academic press, New York 1983)Google Scholar
2. Rubloff, G. W., Surf. Sci. 132, 268 (1983)Google Scholar
3. Borisenko, V. E., Semiconducting Silicides (Springer, Berlin 2000).Google Scholar
4. Bost, M. C. and Mahan, J. E., J. Appl. Phys., 64 (1998) 2034 Google Scholar
5. Dimitrdis, C. A., Wener, J. H., Logothetisdis, S., Stutzmann, M., Weber, J. and Nesper, R., J. Appl. Phys., 68 (1990) 1726.Google Scholar
6. Gerthsen, D., Radermacher, K., Dieker, Ch. and Manti, S., J. Appl. Phys., 71 (1992)Google Scholar
7. Bost, M.C. and Mahan, J.E., J.Electr.Mater., 16 (1987) 389 Google Scholar
8. Sundström, K. E., Petersson, S. and Tove, P. A., Phys. Status. Solidi A, 20 (1973) 653 Google Scholar
9. Wang, J., Hiraki, M., Kusaka, M. and Iwami, M., Appl. Surf. Sci., 113/114 (1997) 53 Google Scholar
10. Eizenberg, M. and Tu, K. N., J. Appl. Phys., 53 (1982) 6885 Google Scholar
11. Zhang, L. and Ivey, D. G., J. Mater. Res., 6 (1991) 1518 Google Scholar
12. Zhang, Q., Takeguchi, M., Tanaka, M. and Furuya, K., J. Cryst. Growth, to be published.Google Scholar
13. Tanaka, M., Takeguchi, M., Yasuda, H. and Furuya, K., J. Electron Microsc. to be published.Google Scholar
14. Villars, P. and Calvert, L. D., Person's Handbook of Crystallographic Data for Intermetallic Phases Vol.3, (American Society for Metals, USA, 1985), pp27352737 Google Scholar
15. Kawasumi, I., Sakata, M., Nishida, I. and Masumoto, K., J. Mater. Sci. 16 (1981) 355 Google Scholar
16. Zhang, Q., Takeguchi, M., Tanaka, M. and Furuya, K., in preparation.Google Scholar
17. Lian, Y. C. and Chen, L. J., Appl. Phys. Lett., 48, 359 (1986)Google Scholar