Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T01:03:21.285Z Has data issue: false hasContentIssue false

Suppression of Size Effects in Ferroelectric Films

Published online by Cambridge University Press:  10 February 2011

Seshu B. Desu*
Affiliation:
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, sdcsu@ecs.umass.edu
Get access

Abstract

It is widely reported that the dielectric permittivity of ferroelectric films decreases with decreasing film thickness, and understanding and controlling these size effects are very important for charge storage application of these films. By combining phenomenological theory with careful experimental work, we have shown that the form of the boundary condition for the polarization plays a decisive role in the manifestation of size effects in ferroelectric films. We have taken two extreme boundary conditions to prove our point. For the case normal electrodes, it is assumed that the boundary condition for the component of polarization vector at the ferroelectric/electrode interface is P = 0. This case corresponds to the presence of a strong edge field, resulting in “freezing out” of the ferroelectric polarization at the interface and thus exhibiting severe size effects. However, if one utilizes conductive oxide electrodes that are ferroelectric in nature the polarization would not vanish at the ferroelectric/electrode interface and therefore the size effects are largely suppressed. To prove our point and to eliminate grain size, stress, and compositional effects, epitaxial SrTiO3 thin films with stoichiometric composition on SrTiO3 single crystal substrates were investigated. In fact, the experimental data also indicates that the use of ferroelectric electrodes indeed suppress the size effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Jona, F. P. and Shirane, G.Ferroelectric Crystals,” Pergamon (1962).Google Scholar
2) Bradley, F.N., J Am. Ceram. Soc., 52, 293 (1968).Google Scholar
3) Kanzig, W., Phy. Rev., 98, 549, (1955).Google Scholar
4) Art, G., Hennings, D and With, G. De, J. Appl. Phys., 58, 1619 (1985).Google Scholar
5) Shibata, H. and Toyoda, H., J. Phys. Soc. Jpn., 17, 404 (1962).Google Scholar
6) Dudkevich, V. P. et al. , Bull. Acad. Sci. USSR, Phys. Ser., 39, 141 (1975).Google Scholar
7) Slack, J. R. and Burfoot, J. C., J. Phys.C: Solid State Physics, 4, 898 (1971).Google Scholar
8) Desu, S. B., Mat. Res. Soc, Symp. Proc., 200, 319 (1990).Google Scholar
9) Kobayashi, I. et al. , Jpn. J. Appl. Phys., 33, 4680 (1994).Google Scholar
10) Kotecki, D.E., This volume, (1999).Google Scholar
11) Anliker, M., Brugger, H. R., and Kanzig, W., Hel. Phys. Acta., 27, 99 (1954).Google Scholar
12) Coufova, P. and Arend, H., Czech. J. Phys., B12, 309 (1962).Google Scholar
13) Khrashchevskii, V. A., Vestink Kievsk Politekh. Inst. Radioelecktroniki, 2, 141 (1965).Google Scholar
14) Bursian, E. V., Girshberg, Ya. G., Makarov, K.V., and Zaikovskii, O. I., Fiz. Tverd. Tela, 12, 1850 (1970).Google Scholar
15) Miller, R. C. and savage, A., J. Appl. Phys., 31, 662 (1960).Google Scholar
16) Chynoweth, A.G., J. Appl. Phys., 27, 78 (1956) and Phys. Rev., 102, 705 (1956).Google Scholar
17) Merz, W. J., J. Appl. Phys., 27, 938 (1956).Google Scholar
18) English, F. L., J. Appl. Phys., 39, 3221 (1968).Google Scholar
19) Bhide, V. G., Gondhalecar, R.T. and Shringi, S. N., J. Appl. Phys., 36, 3825 (1965).Google Scholar
20) Callaby, D. R., J. Appl. Phys., 37, 2295 (1966).Google Scholar
21) Bloomfield, P. E., Lefkowitz, I., and Aronoff, A. D., Phys. Rev., B: Solid State, 4, 974 (1971).Google Scholar
22) Motegi, H., J. Phys. Soc. Jpn., 32, 202 (1972).Google Scholar
23) Bihan, R. and Maussion, M., Compt. Rend., 274, 1075 (1972).Google Scholar
24) Devonshire, A. F., Philos. Mag., 40, 1040, (1949).Google Scholar
25) Robertson, J. and Chen, C.W., This volume, (1999).Google Scholar
26) Boyeaus, J. P. and Michel-Calendini, F. M., J. Phys. C: Solid State Phys. 12, 545 (1979).Google Scholar
27) Koreack, D., Lepine, Y. and Brebner, J. L., J Phys. C: Solid State Phys., 17, 833 (1984).Google Scholar
28) Carnes, J. E. and Goodman, A. M., J Appl. Phys., 38, 3091 (1967).Google Scholar