Published online by Cambridge University Press: 21 February 2011
Bilayers of 40 nm titanium nitride and 500 nm copper were sputter deposited on oxidized silicon substrates. The films were annealed for one hour at temperatures from 400° C to 800° C in either vacuum or Ar/H2, ambients. Neither x-ray diffraction or Rutherford backscattering spectrometry indicated any interaction between the titanium nitride and copper films. While no differences in surface morphology were detected at annealing temperatures of less than 500° C, above this temperature a strong dependence on annealing ambient was found. In the vacuum annealed samples, surface grooves formed at the grain boundaries of the copper film. These grooves became progressively larger as the annealing temperature was increased, eventually leading to void formation. Only small grain boundary grooves were present in the Ar/H2, annealed films regardless of annealing temperature. The driving force for the formation of the grooves is believed to be a difference between the grain boundary and surface energies in the copper films. It is speculated that in Ar/H2 anneals this driving force is reduced because hydrogen segregates to the copper grain boundaries and lowers the grain boundary energy.
The formation of grooves was found to retard copper grain growth and texturing. Resistivity of the copper film was also found to increase if the void density was sufficiently high.