Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:49:19.956Z Has data issue: false hasContentIssue false

Surface Recombination and Vacuum/GaN/AlGaN Surface Quantum Wells

Published online by Cambridge University Press:  01 February 2011

Xiyao Zhang
Affiliation:
xzhang11@ncsu.edu
Ian Patrick Wellenius
Affiliation:
pwellen@ncsu.edu
Ailing Cai
Affiliation:
acai@unity.ncsu.edu
John Muth
Affiliation:
muth@unity.ncsu.edu, United States
John Roberts
Affiliation:
jroberts@nitronex.com
Pradeep Rajagopal
Affiliation:
Pradeep@nitronex.com
Jim Cook
Affiliation:
jcook@nitronex.com
Eddie Piner
Affiliation:
epiner@nitronex.com
Kevin Linthicum
Affiliation:
kLinthicum@nitronex.com
Get access

Abstract

Surface quantum wells of gallium nitride have been grown by Metal Organic Vapor Phase Epitaxy on top of AlGaN/GaN heterostructures. One boundary of the quantum well is vacuum (or air)/GaN interface, the other is GaN/AlGaN interface, and the width of the quantum well is the thickness of gallium nitride cap, and quantum confinement is demonstrate by the energy shift in photoluminescence, and cathodoluminescence as the GaN cap thickness is varied. The efficiency of the quantum well emission is sensitive to the surface environment and resulting surface recombination velocity. In this study the surface is altered by surface preparation treatments and resulting in changes in the luminescence. The changes in the efficiency of quantum well luminescence with surface treatments are attributed to changes in surface recombination velocity and surface electric fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Marso, M., Javorka, P., Dikme, Y, Kalisch, H, Bernat, J, Schafer, C, Schineller, B, Von der Hart, A., Wolter, M., Fox, A, Jansen, R.H., Heuken, M, Kordos, P, Luth, H, “Influence of doping concentration on DC and RF performance of AlGaN/GaN HEMTs on silicon substratePhysica Status Solidi A-Applied Research 200, 179 (2003)CrossRefGoogle Scholar
2 Heikman, S., Keller, S., Wu, Y., Speck, J. S., Denbaars, S. P., and Mishra, U.K., J. Applied Physics, “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures93 104114 (2003)Google Scholar
3 Muth, J.F., Zhang, X., Cai, A. L., and Fothergill, D., Roberts, J.C., Rajagopal, P., Cook, J. W. Jr., Piner, E.L., and Linthicum, K.J., “Gallium Nitride Surface Quantum Wells”, Applied Physics Letters 87, 192117 (2005)CrossRefGoogle Scholar
4 Cohen, R. M., Kitamura, M., and Fang, Z.M., “Surface Quantum Wells”, Applied Physics letters, 50, 1675 (1987)CrossRefGoogle Scholar
5 Yablononvitch, E., Cox, H.M., and Gmitter, T.J., “Nearly ideal electronic surfaces on naked In0.53Ga0.47As Quantum WellsApplied Physics letters, 52, 1002 (1988)CrossRefGoogle Scholar
6 Martinez, G.L., Curiel, M.R., Skromme, B.J., and Molnar, R.J., “Surface Recombination and Passivation of GaN”, Journal of Electronic Materials, 29(3), 325 (2000)CrossRefGoogle Scholar
7 Aspnes, D.E., “Recombination At Semiconductor Surfaces and Interfaces”, Surface Science 132, 406 (1983)CrossRefGoogle Scholar
8 Johnson, J. W., Gao, J., Lucht, K., Williamson, J., Strautin, C., Riddle, J., Therrien, R., Rajagopal, P., Roberts, J. C., Vescan, A., Brown, J. D., Hanson, A., Singhal, S., Borges, R., Piner, E. L., and Linthicum, K. J., Proceedings of the Electrochemical Society, Electrochemical Society, New York, 2004, p. 405.Google Scholar
9 Rajagopal, P., Roberts, J. C., Cook, J. W. Jr., Brown, J., Piner, E., and Linthicum, K., Mater. Res. Soc. Symp. Proc. 798, 61 2004.Google Scholar