Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T00:23:15.874Z Has data issue: false hasContentIssue false

Synthesis and Densification of Nanometric Ce0.8Sm0.2O1.9-δ

Published online by Cambridge University Press:  26 February 2011

Vincenzo Esposito
Affiliation:
vincenzo.esposito@uniroma2.it, University of Rome Tor Vergata, Scienze e Tecnologie Chimiche, Viale della ricerca Scientifica, Rome, 00155, Italy, 0039 06 72594483
Marco Fronzi
Affiliation:
ramco@libero.it, Università di Roma Tor Vergata, Scienze e tecnologie Chimiche, Viale della ricerca scientifica, Rome, 00155, Italy
Enrico Traversa
Affiliation:
traversa@uniroma2.it, Università di Roma Tor Vergata, Scienze e tecnologie Chimiche, Viale della ricerca scientifica, Rome, 00155, Italy
Get access

Abstract

Nanometric 20% molar Sm-doped ceria (SDC20) powders were synthesized by tetrametylethylen ammine (TMDA) co-precipitation method. SDC20 was sintered in several conditions to control the final microstructure. Fast firing and conventional sintering were performed. LiNO3 was used as an additive to promote liquid phase sintering of ceria at low temperatures (900-1200°C). Powders and dense pellets were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) measurements were performed on dense pellets in air to estimate the contribution of grain boundary and bulk to the electrical conductivity. Liquid phase sintering produced the densest samples with the highest conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steele, B.C.H., Solid State Ionics, 129, 95, (2000).Google Scholar
2. Gödickemeier, M., Gauckler, L.J., J. Electrochem. Soc., 145, 414, (1998).Google Scholar
3. Murray, E.P., Tsai, T., Barnett, S.A., Nature, 400, 649, (1999).Google Scholar
4. Gorte, R.J., Kim, H., Vohs, J.M., J. Power Sources, 106, 10, (2002).Google Scholar
5. Steele, B.C.H., Middleton, P.H., Rudkin, R., Solid State Ionics, 40, 388, (1990).Google Scholar
6. Marina, O.A., Bagger, C., Primdahl, S., Mogensen, M., Solid State Ionics, 123, 199, (1999).Google Scholar
7. Uchida, H., Arisaka, S., Watanabe, M., Steele, , Solid State Ionics, 135, 347, (2000).Google Scholar
8. Charojrochkul, S., Choy, K.-L., Steele, B.C.H., Solid State Ionics, 121, 107, (1999).Google Scholar
9. Laosiripojana, N., Assabumrungrat, S., Appl. Catal. B-Environ, 60, 107, (2005).Google Scholar
10. Chen, P.L., Chen, I.W., J. Am. Ceram. Soc., 77, 2289, (1994).Google Scholar
11. Suda, E., Pacaud, B., Montardi, Y., Mori, M., Ozawa, M., Takeda, Y., Electrochemistry, 71 (10), 866, (2003).Google Scholar
12. Li, J.-G., Ikegami, T., Lee, J.-H. and Mori, T., Acta mater., 49, 419, (2001).Google Scholar
13. Maier, J., Prog. Solid State Ch., 23, 171, (1995).Google Scholar
14. Tuller, H. L., Solid State Ionics, 131,143, (2000).Google Scholar
15. Chiang, Y.-M-, Lavik, E.B. and Blom, D.A., Nanostruct. Mater., 9, 633, (1997).Google Scholar
16. Kleinlogel, C., Gauckler, L.J., Solid State Ionics, 135, 567, (2000).Google Scholar