Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:22:43.691Z Has data issue: false hasContentIssue false

Synthesis and Morphology Control of Carbon Nanotube/Polyaniline Composite for Chemical Sensing

Published online by Cambridge University Press:  11 January 2012

Mengning Ding
Affiliation:
U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236, U.S.A. Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Alexander Star
Affiliation:
U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236, U.S.A. Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Get access

Abstract

Composites of single-walled carbon nanotubes (SWNTs) and polyaniline (PAni) were synthesized using different approaches. SWNT/PAni nanocomposite with controlled core/shell morphology was achieved. Our chemical sensing tests showed that such core/shell morphology resulted in superior sensor performance, with an increased sensitivity to acetone vapors, and a reversible detection of hydrazine vapors. The reversible detection of parts-per-billion concentrations of hydrazine offers promise for a portable solid-state detector that has potential application in aerospace.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kauffman, D. R. and Star, A., Angew. Chem. Int. Ed. 47, 6550 (2008).Google Scholar
2. Snow, E. S., Perkins, F. K. and Robinson, J. A., Chem. Soc. Rev. 35, 790 (2006).Google Scholar
3. Virji, S., Huang, J., Kaner, R. B. and Weiller, B. H., Nano Lett. 4, 491 (2004).Google Scholar
4. Liao, Y., Zhang, C., Zhang, Y., Strong, V., Tang, J., Li, X., Kalantar-zadeh, K., Hoek, E. M. V., Wang, K. L. and Kaner, R. B., Nano Lett. 11, 954 (2011).Google Scholar
5. He, L., Jia, Y., Meng, F., Li, M. and Liu, J., Mater. Sci. Eng. B 163, 76 (2009).Google Scholar
6. Zhang, T., Nix, M. B., Yoo, B. Y., Dechusses, M. A. and Myung, N. V., Electroanalysis 12, 1153 (2006).Google Scholar
7. Gao, M., Huang, S., Dai, L., Wallace, G., Gao, R. and Wang, Z., Angew. Chem. Int. Ed. 39, 3664 (2000).Google Scholar
8. Huang, J., Virji, S., Weiller, B. H. and Kaner, R. B., J. Am. Chem. Soc. 125, 314 (2003).Google Scholar
9. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y., Lee, T. R., Colbert, D. T. and Smalley, R. E., Science, 280, 1253 (1998).Google Scholar
10. Ding, M., Tang, Y., Gou, P., Reber, M. J. and Star, A., Adv. Mater. 23, 536 (2011).Google Scholar
11. Sahoo, N., Jung, Y., So, H. and Cho, J., Synth. Met., 157, 374 (2007).Google Scholar
12. Liao, Y., Zhang, C., Zhang, Y., Strong, V., Tang, J., Li, X. G., Kalantar-zadeh, K., Hoek, E. M. V., Wang, K. L. and Kaner, R. B., Nano Lett., 11, 954 (2011).Google Scholar
13. Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. and Perkins, F. K., Nano Lett. 6, 747 (2006).Google Scholar
14. Virji, S., Huang, J., Kaner, R. B. and Weiller, B. H., Nano Lett. 4, 491 (2004).Google Scholar