Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:51:54.219Z Has data issue: false hasContentIssue false

Synthesis of Tetramethylammonium Polyoxovanadates

Published online by Cambridge University Press:  18 March 2011

Nathalie Steunou
Affiliation:
Chimie de la Matière Condensèe, UMR CNRS 7574Universitè Pierre et Marie Curie, Paris, France
Laure Bouhedja
Affiliation:
Chimie de la Matière Condensèe, UMR CNRS 7574Universitè Pierre et Marie Curie, Paris, France
Jocelyne Maquet
Affiliation:
Chimie de la Matière Condensèe, UMR CNRS 7574Universitè Pierre et Marie Curie, Paris, France
Jacques Livage
Affiliation:
Chimie de la Matière Condensèe, UMR CNRS 7574Universitè Pierre et Marie Curie, Paris, France
Get access

Abstract

Tetramethylammonium (TMA) polyoxovanadates have been precipitated from aqueous solutions aroundpH 7. Decavanadate clusters (TMA)4[H2V10O28]•4H2O are formed at room temperature whereas a layered (TMA)[V4O10] mixed valence compound is formed under hydrothermal conditions. 51V NMR spectra recorded on the solution at different temperatures show that upon heating decavanadate clusters are progressively transformed into cyclic [V4O12]4− metavanadates. This suggests that the mixed valence polyoxovanadates are formed via the ring opening polymerization of metavanadate precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.(a) Pope, M.T., Müller, A., Angew. Chem. Int. Ed. Engl., 30, 34 (1991); (b) A. Müller, H. Reuter, S. Dilionger, Angew. Chem. Int. Ed. Engl., 34, 2328(1995).Google Scholar
2. Chirayil, T., Zavalij, P.Y., Whittingham, M.S., Chem. Mater., 10, 2629 (1998).Google Scholar
3.(a) Müller, A., Penk, M., Rohlfing, R., Krickemeyer, E., Döring, J., Angew. Chem. Int. Ed. Engl., 29, N°8 926 (1990). (b) A. Müller, R. Sessoli, E. Krickemeyer, H. Bögge, J. Meyer, D. Gatteschi, L. Pardi, J. Westphal, K. Hovemeier, R. Rohlfing, J. Döring, F. Hellweg, C. Beugholt, M. Schmidtmann, Inorg. Chem., 36, 5239 (1997).Google Scholar
4. Steunou, N., Vaissermann, J., Livage, J., to be publishedGoogle Scholar
5. Zavalij, P.Y., Whittingham, M.S., Boylan, E.A.; Pecharsky, V.K., Jacobson, R.A., Z. Kristallogr, 211, 464 (1996).Google Scholar
6.(a) O'Donnell, S.E., Pope, M.T., J. Chem. Soc. Dalton Trans., 2290 (1976). (b) O.W. Howarth, M. Jarrold, J. Chem. Soc. Dalton Trans., 503 (1978).Google Scholar
7.(a) Heath, E., Howarth, O.W., J. Chem. Soc. Dalton Trans., 1105 (1981). (b) V.W. Day, W.G. Klemperer, D.J. Maltbie, J. Am. Chem. Soc., 109, 2991 (1987).Google Scholar
8. Evans, H.T., Z. Kristallogr., 114, 257 (1960).Google Scholar
9.(a) Chirayil, T.G., Boylan, E.A., Mamak, M., Zavalij, P.Y., Whittingham, M.S., Chem. Comm., 33 (1997). (b) P.Y. Zavalij, T. Chirayil, M.S.Whittingham, Acta Cryst., C53, 879 (1997).Google Scholar