Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:42:49.424Z Has data issue: false hasContentIssue false

Tem Structure Investigations of Low-Temperature MBE Grown Inalas Layers on INP<001> Substrate

Published online by Cambridge University Press:  25 February 2011

P. Werner
Affiliation:
Materials Sciences Div., Lawrence Berkeley Laboratory, Univ.California, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
Materials Sciences Div., Lawrence Berkeley Laboratory, Univ.California, Berkeley, CA 94720
K.M. Yu
Affiliation:
Materials Sciences Div., Lawrence Berkeley Laboratory, Univ.California, Berkeley, CA 94720
E.R. Weber
Affiliation:
Materials Sciences Div., Lawrence Berkeley Laboratory, Univ.California, Berkeley, CA 94720
Z. Rek
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford University, CA 94309
R. Metzger
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

The real crystal structure of In0.52A10.48As layers grown on InP<001> substrate as a function of the growth temperature (between 150°C and 450°C) was investigated. The following structural / electrical analyses were applied to the samples: transmission electron microscopy (TEM), x-ray diffraction and particle induced x-ray emission (PIXE). In the temperature range between 200°C and 450°C good epitaxial growth of InAlAs layers can be achieved with a low density of dislocations and stacking faults. Ordering of group-III elements on {111} planes was observed for these layers. Structure models of such ordered domains are discussed. At growth temperatures below 300 °C additional As (≈2%) is incorporated in the lattice. Growth at temperatures below 200°C leads to the formation of pyramidal defects with As grains in their cores. As-grown as well as annealed InAlAs layers show a nearly constant, high electrical resistance (106-107Ωcm) in the whole temperature range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M., and Mahoney, L.J., IEEE Electron. Device Lett. 9, 77 (1988)Google Scholar
2. Metzger, R.A., Braun, A.S., Stanchina, W.E., Lui, M., Wilson, R.G., Kargodorian, T.V., McCray, L.G., and Henige, J.A., J.Crystal Growth 111, 445 (1991)Google Scholar
3. Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., McInturff, D.T, Melloch, M.R., Otsuka, N., Appl.Phys.Lett. 57,1331(1990)Google Scholar
4. Liliental-Weber, Z., Claverie, A., Smith, F.,and Calawa, A.R., Appl. Phys. A53, 141 (1991)Google Scholar
5. Liliental-Weber, Z., Cooper, G., Mariella, R.,and Kocot, C., J.Vac.Sci.Technol. B9, 2323 (1991)Google Scholar
6. Claverie, A., Yu, K.M., Swider, W., Liliental-Weber, Z., O'Keefe, M., Kilaas, R., Pamulapati, J., and Bhattacharya, P.K., Appl.Phys.Lett. 60, 989 (1992)Google Scholar
7. Kaminska, M., Liliental-Weber, Z., Weber, E.R., Leon, R.,and Rek, Z., J.Vac.Sci.Technol. B7, 710 (1990)Google Scholar
8. Liliental, Z., Claverie, A., Werner, P., Schaff, W.,and Weber, E.R., Materials Sci.Forum Vol.83–87, 1045 (1992)Google Scholar
9. Gupta, S., Bhattacharya, P.K., Pamulapati, J. and Mourou, G., Appl. Phys. Lett 57, 1543 (1990)Google Scholar
10. Claverie, A., Liliental-Weber, Z., Werrner, P., Swider, W., Bhattacharya, P.K., Gupta, S., and Mourou, S., MRS Full Meeting,Boston 1991, Sympos. F, in pressGoogle Scholar