Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:00:21.248Z Has data issue: false hasContentIssue false

Temperature Control and Temperature Uniformity During Rapid Thermal Processing

Published online by Cambridge University Press:  28 February 2011

Peter Vandenabeele
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw) Kapeldreef 75, B-3001, Leuven, Belgium
Karen Maex
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw) Kapeldreef 75, B-3001, Leuven, Belgium
Get access

Abstract

An overview is given of the major problems in temperature control and uniformity control. For temperature control varying emissivity due to layers, roughness, doping and chamber design are discussed, together with problems due to lamp radiation. The main way to go seems to be in-situ emissivity correction. For uniformity control, the main problems are non-uniform reflector radiation and patteren induced non-uniformity. The solution seems to be the design of a reflective chamber with uniform reflected radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vandenabeele, P. and Maex, K., “Round-robin comparison of temperature nonuniformity during RTP due to patterned layers”, SPIE Proc. 1393, (Santa Clara, October 1990) p. 372.Google Scholar
2. Hobbs, L. and Macx, K., presented at the European Workshop for refractory Metals and Silicides, Stockholm March 1991, to be published in Appl. Surf. Sc.Google Scholar
3. Sorell, F. Y. and Harris, J. A., “Surface radiation characteristics in RTCVD temperature measurement and control”, SPIE Proc. 1-18, (Santa Clara, 12-13 October, 1989), p. 30.Google Scholar
4. Gat, A. S.; Westerbergh, E. R., US patent 4,680,451 (1987).Google Scholar
5. Kermani, A., Ku, Y. H., Wong, F., Kim, K. B., Maillot, P., Morgan, A. E., Hahn, S., “The application of rapid thermal vapor deposition of doped-thin single crystal silicon for MOS and bipolar technologies”, SPIE Proc. 11-a (1989) p. 121.Google Scholar
6. Moslehi, M., “Proces uniformity and slip dislocations patterns in linearly ramped-temperature transient rapid thermal processing of silicon”, IEEE Trans. on semiconductor manufacturing 2, 130 (1989).CrossRefGoogle Scholar
7. Blake, J., Gelpey, J., Moquin, J. F., Schlueter, J. and Capodilupo, R., “Slip free rapid thermal processing”, MRS Proc. 22 (1987) p. 265.Google Scholar
8. slip-guard, A ring is used by at least two vendors: AG assoc. and AST Elektronik.Google Scholar
9. Pettibone, D.W., Suarez, J.R., Gat, A., “The effect of thin dielectric films on the accuracy of pyrometric temperature measurement”, MRS Proc. 52 (1986) p. 209.Google Scholar
10. Hill, C., Jones, S. and Boys, D., “Rapid thermal annealing - Theory and practice”, NATO-ASI series 2M7 (Boca Raton, June 20 - July 1, 1988) p. 143.Google Scholar
11. Vandenabeele, P. and Maex, K., “Emissivity of silicon wafers during rapid thermal processing”, SPIE Proc. 1393 (Santa Clara, 2-3 October 1990) p. 316.Google Scholar
12. Schumann, P. A. Jr., Keenan, W. A., Tong, A. H., Gegenwarth, H. H. and Schneider, C. P., “Silicon Optical Constants in the Infrared”, J. Electrochem. Soc. 118 (1) 145 (1971).Google Scholar
13. Yablonovitch, E., “Statistical ray optics”, J. Opt. Soc. Am. 72 (7) 899 (1982).Google Scholar
14. Vandenabeele, P. and Maex, K., to be published.Google Scholar
15. Nulmann, J.Emissivity issues in pyrometric temperature monitoring for RTP systems”, SPIE Proc. 1189 (1989) p. 72.Google Scholar
16. Schietinger, C., Adams, B. and Yarling, C., “Riplle technique: a novel non-contact wafer emissivity and temperature method for RTP”, (this volume)Google Scholar
17. Roozeboom, F., “Temperature control and system design aspects in rapid thermal processing”, (this volume)Google Scholar
18. Regolini, J. L., Dutartre, D., Bensahel, D. and Penelon, J., “RTP-LPCVD for selective Si-epitaxy and silicide films”, Solid State Technol. 34 (2), 47 (1990).Google Scholar
19. Gelpey, J. C., Stump, P. O. and Smith, J. W., “Proces control for a rapid optical annealing system”. MRS Proc. 52 (1986) p. 199.Google Scholar
20. Mordo, D., Wasserman, Y. and Gat, A., “In-situ emissivity correction using dual color pyrometry”, (this volume).Google Scholar
21. Dilhac, J.-M., Ganibal, C. and Nolhier, N., “In-situ wafer emissivity variation measurement in a rapid thermal processor” (this volume)Google Scholar
22. Vandenabeele, P. and Maex, K., “Temperature non-uniformities during rapid thermal processing of patterned wafers”, SPIE Proc. 1189 (1989) p. 89.Google Scholar
23. Kakoschke, R., “Is there a way to a perfect rapid thermal processing system?”, (this volume).Google Scholar
24. Kakoschke, R., “Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors”, US patent 4,981,815.Google Scholar
25. Eichhammer, W., Vandenabeele, P., Maex, K., “Temperature control and uniformity during rapid thermal silicidation”, (this volume).Google Scholar