Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:51:22.131Z Has data issue: false hasContentIssue false

Temperature dependence of transport properties of InN films

Published online by Cambridge University Press:  01 February 2011

J.S. Thakur
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202
R. Naik
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202
Vaman M Naik
Affiliation:
vmnaik@umich.edu, University of Michigan-Dearborn, Natural Sciences, 4901 Evergreen Road, Dearborn, MI, 48128, United States, 313 593 5277, 313 593 4937
D. Haddad
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202
G.W. Auner
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202
H. Lu
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14583
W.J. Schaff
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14583
Get access

Abstract

The temperature dependence of Hall mobility, µ, and carrier density, Ne, for thin InN films grown by Molecular Beam Epitaxy and Plasma Source Molecular Beam Epitaxy have been investigated. For temperature up to 300 K, a large temperature-independent Ne is observed in films grown by the above two techniques. However, for higher temperatures, carrier density (Ne) increases with temperature. The characteristic behavior of the mobility for the films with low carrier density is different from that of the high carrier density film, particularly at low temperatures. The low carrier density film shows a peak ∼250 K in mobility as a function of temperature which is contrast to the temperature independent mobility observed for the high density film for T < 300 K. We have investigated theoretically the effect of concentration of donor, acceptor, and threading dislocations on the carrier mobility in these films. Various electron-scattering mechanisms for the mobility in these films have been discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu Davydov, V., et al. , Phys. Stat. Sol. (b) 229, R1 (2002);Google Scholar
Yu Davydov, V., et al. , Phys. Stat. Sol. (b) 230, R4 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
2. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
3. Thakur, J.S., Haddad, D., Naik, V.M., Naik, R., G.W., , Lu, H., and Schaff, W. J., Phys. Rev. B, 71, 115203 (2005).CrossRefGoogle Scholar
4. Look, D.C., Lu, H., Schaff, W.J., Jansinski, J. and Liliental-Weber, Z., Appl. Phys. Lett. 80, 258 (2002);CrossRefGoogle Scholar
Jenkins, D. W. and Dow, J.D., Phys. Rev. B, 39, 3317(1989).CrossRefGoogle Scholar
5. Osamura, K., Nakajima, K., and Murakai, Y., Solid State Commun. 11, 617 (1972).CrossRefGoogle Scholar
6. Tansley, T.L. and Foley, C.P., J. Appl. Phys. 59, 3241, (1986);CrossRefGoogle Scholar
Tansley, T.L. and Foley, C.P., J. Appl. Phys., 60, 2092 (1986).CrossRefGoogle Scholar
7. Thakur, J.S., Haddad, D., Naik, V.M., Naik, R., and Auner, G.W., J. Appl. Phys. 95, 4795 (2004).Google Scholar
8. Shubina, T.V., Ivanov, S.V., Jmerik, V. N., Solnyshkov, D. D., Vekshin, V. A., Kop'ev, P. S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H. and Shimono, K., Kasic, A. and Monemar, B., Phys. Rev. Lett. 92, 117407 (2004).Google Scholar
9. Haddad, D.B., Thakur, J.S., Naik, V.M., Auner, G.W., Naik, R., and Wenger, L.E., Mat. Res. Soc. Proc., Vol. 743, L11.22.16 (2003);Google Scholar
Haddad, D.B., Dai, H., Naik, R., Morgan, C., Naik, V.M., Thakur, J.S., Auner, G.W., Wenger, L.E., Lu, H., and Schaff, W.J., Mat. Res. Soc. Symp. Proc. Vol. 798, Y12.7.16 (2004).Google Scholar
10. Mahboob, I., Veal, T.D., McConville, C. F., Lu, H. and Schaff, W. J., Phys. Rev. Lett. 92, 036804–1 (2004);CrossRefGoogle Scholar
Mahboob, I., Veal, T.D., Piper, L. F. J., McConville, C. F., Lu, H., Schaff, W. J., Furthmuller, J. and Bechstedt, F., Phys. Rev. B. 69, 201307(R) (2004),CrossRefGoogle Scholar
11. Wu, J., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., and Schaff, W.J., Phys. Rev. B. 66, 201403 (2002);CrossRefGoogle Scholar
Lu, H., Schaff, W. J., Hwang, H., Wu, H., Koley, G., and Eastman, L.F., Appl. Phys. Lett. 79, 1489 (2001).CrossRefGoogle Scholar
12. Naik, V.M., Naik, R., Haddad, D.B., Thakur, J.S., Auner, G.W., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 86, 201913 (2005).CrossRefGoogle Scholar
13. Look, D.C., Reynolds, D.C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev. Lett. 92, 117407 (2004).Google Scholar
14. Look, D.C., Reynolds, D.C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev. Lett. 79, 2273 (1997).CrossRefGoogle Scholar
15. Look, D.C. and Sizelove, J. R., Phys. Rev. Lett. 82, 1237 (1999).CrossRefGoogle Scholar
16. Look, D.C., Electical Characterization of GaAs Materials and Devices, (Wiley, New York, 1989).Google Scholar
17. Bardeen, J. and Shockley, W., Phys. Rev. 80, 72 (1950).CrossRefGoogle Scholar