Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T23:25:08.333Z Has data issue: false hasContentIssue false

Ternary Skutterudites: Anion Ordering and Thermoelectric Properties

Published online by Cambridge University Press:  01 February 2011

Paz Vaqueiro
Affiliation:
chepv@hw.ac.uk, Heriot-Watt University, Chemistry, Department of Chemistry, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Gerard G. Sobany
Affiliation:
gsg2@hw.ac.uk, Heriot-Watt University, Department of Chemistry, Edinburgh, EH14 4AS, United Kingdom
Get access

Abstract

The ternary skutterudites AB1.5Q1.5 (A = Co, Rh, Ir, B =Ge, Sn and Q = S, Te) have been synthesized and structurally characterised. Powder diffraction data are consistent with the presence of anion ordering, which results in a lowering of the symmetry from cubic to rhombohedral. The ordered skutterudite structure contains rhomboidal four-membered B2Q2 rings, instead of the homonuclear rectangular rings found in binary skutterudites. The electrical transport properties of the AB1.5Q1.5 phases are consistent with semiconducting behaviour, and large values of the Seebeck coefficient have been observed for several of these materials. While their large electrical resistivities might make these materials unsuitable for thermoelectric applications unless significant improvements can be achieved by doping, these materials also exhibit significantly lower thermal conductivities than their binary counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uher, C., “Structure-property relations in skutterudites”, Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride, ed. Kanatzidis, M.G., Mahanti, S.D. and Hogan, T. P. (Kluwer Academics, 2003) pp. 121146.Google Scholar
2. Mitchell, R. H., Perovskites: Modern and Ancient, (Almaz Press, 2002)Google Scholar
3. Korenstein, R., Soled, S., Wold, A. and Collin, G., Inorg. Chem., 16, 23442346 (1977).Google Scholar
4. Lyons, A., Gruska, R. P., Case, C., Subbarao, S. N. and Wold, A., Mat. Res. Bull., 13, 125128 (1978).Google Scholar
5. Fleurial, J.-P., Caillat, T. and Borshchevsky, A., Proceedings of the 16thInternational Conference on Thermoelectrics, 111 (1997).Google Scholar
6. Vaqueiro, P., Sobany, G. G., Powell, A. V. and Knight, K. S., J. Solid State Chem., 179, 20472053 (2006).Google Scholar
7. Vaqueiro, P., Sobany, G. G. and Stindl, M., J. Solid State Chem., submitted.Google Scholar
8. Partik, M., Kringe, C. and Lutz, H. D., Z. Kristallogr., 211, 304312 (1996).Google Scholar
9. Nolas, G. S., Beekman, M., Ertenberg, R. W. and Yang, J., J. Appl. Phys., 100, 036101 (2006).Google Scholar
10. Nagamoto, Y., Tanaka, K. and Koyanagi, T., Proceedings of the 16th International Conference on Thermoelectrics, 330333 (1997).Google Scholar
11. Bos, J. W. G. and Cava, R. J., Solid State Commun., 141, 3841 (2007).Google Scholar
12. Sharp, J. W., Jones, E. C., Williams, R. K., Martin, P. M. and Sales, B. C., J. Appl. Phys., 78, 10131018 (1995).Google Scholar
13. Caillat, T., Borshchevsky, A. and Fleurial, J.-P., J. Appl. Phys., 80, 44424449 (1996).Google Scholar
14. Llunell, M., Alemany, P., Alvarez, S., Zhukov, V.P. and Vernes, A., Phys. Rev. B, 53, 1060510609 (1996).Google Scholar
15. Partik, M. and Lutz, H. D., Phys. Chem. Minerals, 27, 4146 (1999).Google Scholar
16. Nolas, G. S., Yang, J. and Ertenberg, R. W., Phys. Rev. B, 68, 193206 (2003).Google Scholar
17. Caillat, T., Kulleck, J., Borshchevsky, A. and Fleurial, J.-P., J. Appl. Phys., 79, 84198426 (1996).Google Scholar
18. Lutz, H. D. and Kliche, G., J. Solid State Chem., 40, 6468 (1981).Google Scholar
19. Ghosez, P. and Veithen, M., J. Phys.: Condens. Matter, 19, 096002 (2007).Google Scholar
20. Feldman, J. L. and Singh, D. J., Phys. Rev. B, 53, 62736282 (1996).Google Scholar