Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:06:33.010Z Has data issue: false hasContentIssue false

Theoretical Calculation for the Young's Modulus of Poly-Si and a-Si Films

Published online by Cambridge University Press:  15 February 2011

Shuwen Guo
Affiliation:
Physics Department, Jiangxi University, Nanchang 330047, China
Daowen Zou
Affiliation:
Physics Department, Jiangxi University, Nanchang 330047, China
Weiyuan Wang
Affiliation:
State Key Laboratories of Transducer Technology, Shanghai institute of Metallurgy, Academia Sinica, Shanghai 200050, China
Get access

Abstract

A newly theoretical calculation for the Young's modulus Ey of poly-Si and a-Si thin films based on the combination of grain and grain boundary effects as well as the dependance of crystalline orientations is presented. The calculated results are in agreement with the experimental results in a wide range of grain size and hydrogen concentrations published in the literatures. The reason for aberration among experimental data of poly-Si and a-Si films caused by different hydrogen concentrations, texture and grain size has been discussed. The results offer a better understanding of. the effects of film structures on elastic properties of poly-Si and a-Si films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grimsditch, M., Senn, W., Winterling, G.W., Brodsky, M., Solid State Commun. 6(4), 229233 (1978)Google Scholar
[2] Jansen, F., Machonkin, M.A., Palmieri, N., Kuhman, D., J. Appl. Phys., 62(12), 47324736 (1987)Google Scholar
[3] Tanaka, K., Solid State Commun. 60(3), 295298 (1983)CrossRefGoogle Scholar
[4] Korhonen, A.S., Jones, P.L. and Cocks, F.H., Materials Science and Engineering, 49, 127132 (1981)Google Scholar
[5] Cox-Smith, I.R., Liang, H.C., Dillon, R.D., J. Vac. Sci. Technol.,A 3(3) ptl, 674677 (1985)CrossRefGoogle Scholar
[6] Vacher, R., Sussner, H. and Schmidt, M., Solid State Commun. 34, 279 (1980)CrossRefGoogle Scholar
[7] Tatsumi, Y., Shigi, M., Hirata, M., Jpn. J. Appl. Phys., 17(8), 14651466 (1987)Google Scholar
[8] Testardi, L.R. and Hauser, J.J., Solid State Commun., 21, 1037 (1977)CrossRefGoogle Scholar
[9] Fan, L.S., Tai, Y.C. and Muller, R.S., IEEE Trans. Electron Devices, ED–35, 724730 (1988)Google Scholar
[10] Guckel, H., Burns, D.W., Rutigliano, C.R., Showers, D.K. and Uglow, J., Tech. Digest. 4th Int. Conf. Solid-State Sensor and Actuators, Tokyo, (1987), pp. 277282 Google Scholar
[11] Tang, W., Nguyen, T.H. and Howe, R.T., Sensors and Actuators, 20, 2532 (1989)CrossRefGoogle Scholar
[12] Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I., Sensors and Actuators, 20, 135141 (1989)Google Scholar
[13] Putty, M.W., Chang, S., Howe, R.T., Robinson, A., Wise, K.D., Sensors and Actuators, 20, 143151 (1989)CrossRefGoogle Scholar
[14] Howe, R.T., Muller, R.S., IEEE Trans. Electron Devices, ED–33(4), 499506 (1986)CrossRefGoogle Scholar
[15] Murarka, S.P. and Retajczyk, T.F. Jr., J. Appl. Phys., 54(4), 20692072 (1983)CrossRefGoogle Scholar
[16] Guckel, H., Burns, D.W., Tilmans, H.A.C., Deroo, D.W. and Rutiano, C.R., Solid State Sensor and Actuator Workshop, Hilton Head Island, SC USA (1988) pp.9699 Google Scholar
[17] Guttman, L., Solid State Commun., 24, 211212 (1977)Google Scholar
[18] Wortman, J.J. and Evans, R.A., J. Appl. Phys., 36(1), 153156 (1965)Google Scholar
[19] Guo, S., Tan, S., Wang, W., Acta Physica Sinica, 37(11), 17941799 (1988)Google Scholar
[20] Veprek, Iqbal, S., Solid State Commun., 37, 993995 (1981)Google Scholar
[21] Lucovsky, G., Nemanich, R.J. and Knights, J.C., Phys. Rev., B19(4), 20642073 (1979)Google Scholar