Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:26:00.787Z Has data issue: false hasContentIssue false

Thermal Conductivities of Cs-M-O (M = Mo or U) Ternary Compounds

Published online by Cambridge University Press:  31 January 2011

Kazuyuki Tokushima
Affiliation:
tokushima@ms.see.eng.osaka-u.ac.jp, Osaka University, Suita, Japan
Kosuke Tanaka
Affiliation:
tanaka.kosuke@jaea.go.jp, Japan Atomic Energy Agency, Higashiibaraki-gun, Ibaraki, Japan
Ken Kurosaki
Affiliation:
kurosaki@see.eng.osaka-u.ac.jp, Osaka University, Suita, Osaka, Japan
Hiromichi Gima
Affiliation:
gima@ms.see.eng.osaka-u.ac.jp, Osaka University, Suita, Osaka, Japan
Hiroaki Muta
Affiliation:
muta@see.eng.osaka-u.ac.jp, Osaka University, Suita, Osaka, Japan
Masayoshi Uno
Affiliation:
uno@u-fukui.ac.jp, Fukui University, Fukui, Fukui, Japan
Shinsuke Yamanaka
Affiliation:
yamanaka@see.eng.osaka-u.ac.jp, Osaka University, Suita, Osaka, Japan
Get access

Abstract

Thermal conductivities of Cs-M-O (M = Mo or U) ternary compounds, observed in the pellet-cladding gap region and in the pellet periphery in irradiated oxide fuels with high oxygen potentials, were investigated. Bulk samples of Cs2MoO4 and Cs2UO4 were prepared by hot pressing or spark plasma sintering, and their thermal diffusivities were measured by the laser flash method from room temperature to 823 K for Cs2MoO4 and to 900 K for Cs2UO4. The thermal conductivities were evaluated from the thermal diffusivity and bulk density, and the specific heat capacity values available in the literature. The thermal conductivities of Cs2MoO4 and Cs2UO4 were quite low compared with UO2 (e.g. 0.5 Wm−1K−1 at 800 K for Cs2MoO4).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tourasse, M. Boidron, M. and Pasquet, B. J. Nucl. Mater., 188(1992) 49.Google Scholar
[2] Cordfunke, E. H. P. Konings, R. J. M. Thermochemical Date for Reactor Materals and Fission Products, Elsevier, Amsterdam, 158(1990).Google Scholar
[3] Minato, K. Takano, M. Fukuda, K. Sato, S. Ohashi, H. J. Alloys Comp., 255(1997) 18.Google Scholar
[4] Ishii, T. Mizuno, T. J. Nucl. Mater., 231(1996) 242.Google Scholar
[5] Takano, M. Minato, K. Fukuda, K. Sato, S. Ohashi, H. J. Nucl. Sci. and Tech., 35(1998) 485.Google Scholar
[6] Konings, R. J. M. Cordfunke, E. H. P. Thermochim. Acta, 124(1988) 157.Google Scholar
[7] Fredrickson, D. R. O'Hare, P. A. G., J. Chem. Thermodynamics, 8(1976) 353.Google Scholar
[8] JCPDS [24-0276], Kools, F. X. N. M. Koster, A. S. Rieck, G. D. Acta Cryst., 26(1970) 1974.Google Scholar
[9] JCPDS [29-0429], [29-0431], [29-0441], Egmond, A. B. Van, Thesis, University of Amsterdam,(1970).Google Scholar
[10] Schulz, B. KfK-1988,(1974).Google Scholar
[11] Lucuta, P. G. J. Nucl. Mater., 223(1995) 51.Google Scholar
[12] Martin, D. G. J. Nucl. Mater., 110(1982) 73.Google Scholar