Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:19:59.540Z Has data issue: false hasContentIssue false

Thermal Conductivity of Solid Argon by Classical Molecular Dynamics

Published online by Cambridge University Press:  10 February 2011

Hideo Kaburaki
Affiliation:
Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan, (kaburaki@sugar.tokai.jaeri.go.jp)
Ju Li
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139 (http://mmm.mit.edu)
Sidney Yip
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139 (http://mmm.mit.edu)
Get access

Abstract

Following the Green-Kubo formalism in linear response theory, the lattice thermal conductivity of solid argon is determined by using classical molecular dynamics simulation to calculate the heat current correlation function. Comparing the absolute conductivities obtained using the Lennard-Jones potential with experiments, we find the predicted results to uniformly underestimate the measurements in magnitude, whereas the calculated temperature dependence corresponds well with the data. The temporal behavior of the heat current autocorrelation function shows that while a single exponential decay description is appropriate at elevated temperatures, below the half of the Debye temperature, the heat current relaxation clearly consists of two stages, an initial rapid decay associated with local dynamics followed by a slower component associated with the dynamics of lattice vibrations (phonons).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Allen, M. P. and Tildesley, D. J., “Computer Simulation of Liquids”, Clarendon Press, Oxford, 1987.Google Scholar
[2] Barker, J. A., in Rare Gas Solids, Klein, M. and Venables, J., eds. (Academic Press, New York, 1976), vol. 1, chap. 4.Google Scholar
[3] Ermakova, E., Solca, J., Huber, H., Welker, M., J. Chem. Phys. 102, 4942 (1995).Google Scholar
[4] Vogelsang, R., Hoheisel, C., Ciccotti, G., J. Chem. Phys. 86, 6371 (1987).Google Scholar
[5] Ladd, A.J.C., Moran, B., and Hoover, W.G., Phys.Rev.B 34, 5058 (1986).Google Scholar
[6] Lee, Y. H., Biswas, R., Soukoulis, C. M., Wang, C. Z., Chan, C. T., Ho, K. M., Phys. Rev. B 43, 6573 (1991).Google Scholar
[7] Richardson, C. F. and Clancy, P., Phys. Rev. B 45, 12260 (1992).Google Scholar
[8] Kitagawa, H., Shibutani, Y., Ogata, S., Modell. Simul. Mater. Sci. Eng. 3, 521 (1995).Google Scholar
[9] Li, J., Porter, L., Yip, S., J. Nuc. Mater. 255, 139 (1998).Google Scholar
[10] Julian, C.L., Phys.Rev. 137, A128 (1965).Google Scholar
[11] Niklasson, G., Phys.kondens.Materie 14, 138 (1972).Google Scholar
[12] Omini, M. and Sparavigna, A., Phys.Rev.B 35, 9064 (1996-II).Google Scholar
[13] Christen, D.K. Pollack, G.L., Phys.Rev.B 12, 3380 (1975).Google Scholar
[14] Krupskii, I.N. and , Manzhelii, Sov.Phys.JETP 28, 1097 (1969).Google Scholar
[15] Clayton, F. and Batchelder, D.N., J. Phys. C 6, 1213 (1973).Google Scholar
[16] Kaburaki, H., Li, J., Yip, S., to be published.Google Scholar