Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:37:04.694Z Has data issue: false hasContentIssue false

Thermoelectric Properties of La-doped BaSi2 and (Ba,Sr)Si2 Solid Solutions

Published online by Cambridge University Press:  01 February 2011

Kohsuke Hashimoto
Affiliation:
hashimoto@ms.see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Yamadaoka 2-1, Suita, 565-0871, Japan, +81-6-6879-7905, +81-6-6879-7889
Ken Kurosaki
Affiliation:
kurosaki@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Yamadaoka 2-1, Suita, 565-0871, Japan
Hiroaki Muta
Affiliation:
muta@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Yamadaoka 2-1, Suita, 565-0871, Japan
Shinsuke Yamanaka
Affiliation:
yamanaka@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Yamadaoka 2-1, Suita, 565-0871, Japan
Get access

Abstract

We studied the thermoelectric properties of BaSi2 and SrSi2. The polycrystalline samples were prepared by spark plasma sintering (SPS). The electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) were measured above room temperature. The maximum values of the dimensionless figure of merit (ZT) were 0.01 at 954 K for BaSi2 and 0.09 at 417 K for SrSi2. We tried to enhance the ZT values of BaSi2 and SrSi2 by prepareing and characterizing La-doped BaSi2 and (Ba,Sr)Si2 solid solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tritt, T. M., Science 283, 804 (1999).Google Scholar
2. Rowe, D. M., Ed., CRC Handbook of Thermoelectrics, (CRC Press, New York, 1995).Google Scholar
3. Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Sarmunin, A. Yu., and Vedernikov, M. V., Phys. Rev. B 74, 045207 (2006).Google Scholar
4. Morita, K., Inomata, Y., and Suemasu, T., Thin Solid Films 508, 363 (2006).Google Scholar
5. Kishino, S., Imai, T., Iida, T., Nakaishi, Y., Shinada, M., Takanashi, Y., and Hamada, N., J. Alloys Compd. 428, 22 (2007).Google Scholar
6. Imai, M., Naka, T., Furubayashi, T., Abe, H., Nakama, T., and Yagasaki, K., Appl. Phys. Lett. 86, 032102 (2005).Google Scholar
7. Imai, M. and Kikegawa, T., Chem. Mater. 15, 2543 (2003).Google Scholar
8. Hashimoto, K., Kurosaki, K., Imamura, Y., Muta, H., and Yamanaka, S., J. Appl. Phys. 102, 063703 (2007).Google Scholar
9. Hashimoto, K., Kurosaki, K., Muta, H., and Yamanaka, S., Materials Transactions, submitted.Google Scholar
10. Long, R. G., Bost, M. C., and Mahan, J. E., Appl. Phys. Lett. 53, 1272 (1988).Google Scholar