Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T12:11:08.814Z Has data issue: false hasContentIssue false

Thermomechanical Treatment of a Fe3Al alloy

Published online by Cambridge University Press:  26 February 2011

Joachim Konrad
Affiliation:
Materials Technology, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf Microstructure Physics and Metal Forming, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf
Stefan Zaefferer
Affiliation:
Microstructure Physics and Metal Forming, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf
André Schneider
Affiliation:
Materials Technology, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf
Georg Frommeyer
Affiliation:
Materials Technology, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf
Dierk Raabe
Affiliation:
Microstructure Physics and Metal Forming, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str.1 40237, Duesseldorf
Get access

Abstract

A binary Fe3Al alloy is investigated with respect to hot and warm rolling behavior and microstructural as well as microtextural modifications. Rolling has been performed in the A2 and B2 order regimes. The differences in microstructure are investigated. The performed texture analysis reveals the differences in hot and warm rolling textures depending on the hot rolling temperature. On the basis of microtexture investigations by means of electron backscatter diffraction (EBSD) differences concerning orientation gradients and sub-grain structures are found. A model of combined order-related and non-order related effects is proposed explaining the observed material behavior. The results are used for process modification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stein, F., Schneider, A. and Frommeyer, G., Intermetallics 11, 71 (2003).Google Scholar
[2] Leamy, H. J., Kayser, F. X. and Marcinkowski, M. J., Phil. Mag. 20, 763 (1969).Google Scholar
[3] Sun, Z. Q., Huang, Y. D., Yang, W. Y. and Chen, G. L., in High temperature ordered intermetallic alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H., (Mater. Res. Symp. Proc. 288, Pittsburgh, PA, 1993) p. 885.Google Scholar
[4] Huang, Y. D., Yang, W. Y., Chen, G. L. and Sun, Z. Q., Intermetallics 9, 331 (2001).Google Scholar
[5] Dadras, M. M. and Morris, D. G., Scripta Metall. Mater. 28, 1245 (1993).Google Scholar
[6] McKamey, C. G. and Pierce, D. H., Scripta Metall. Mater. 28, 1173 (1993).Google Scholar
[7] Kim, S. M. and Morris, D. G., Acta mater. 46, 2587 (1998).Google Scholar
[8] Konrad, J., Zaefferer, S., Schneider, A., Raabe, D. and Frommeyer, G., Intermetallics (acc. 2005).Google Scholar
[9] Konrad, J., Günther, A., Zaefferer, S. and Raabe, D., D, . GeNF Experimental Report 1, 183 (2003).Google Scholar
[10] Petkovic, R. A., Luton, M. J., Jonas, J. J., Acta metal. 27, 1633 (1979).Google Scholar
[11] Hutchinson, B. and Bate, P., Proc. of IF Steels 2003, ISIJ, Tokyo, 337 (2003).Google Scholar