Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:51:12.977Z Has data issue: false hasContentIssue false

Tin E' Centers in X-Ray Irradiated Sn-Doped Silica

Published online by Cambridge University Press:  15 February 2011

N. Chiodini
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 MilanoItaly, Roberto.Scotti@mater.unimi.it
F. Meinardi
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 MilanoItaly, Roberto.Scotti@mater.unimi.it
F. Morazzoni
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 MilanoItaly, Roberto.Scotti@mater.unimi.it
A. Paleari
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 MilanoItaly, Roberto.Scotti@mater.unimi.it
R. Scotti
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 Milano, Italy
G. Spinolo
Affiliation:
INFM – Dipartimento di Scienza dei Materiali, Universitá di Milano, via Cozzi, 53, 20126 MilanoItaly, Roberto.Scotti@mater.unimi.it
Get access

Abstract

Sn centers are point defects easily formed by X-ray irradiation of Sn-doped silica. Point defects are a tool for assessing the substitutional character of the dopant in Sn-doped SiO2 glasses with different Sn content (SnO2/SiO2 ratio from 0.01 to 10.0 % w/w) and prepared by two sol-gel methods differing in tin precursors (tin tetraterbutoxide and tin dibutyldiacetate). The former method produced transparent crack-free monolithic glasses of Sn-doped silica with maximum tin content of 0.1 % (SnO2/SiO2 % w/w). The latter method is more efficient and produced transparent glasses with a tin content of 1%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feigl, F.J., Fowler, W.B., and Yip, K.L., Solid State Commun. 14, p. 225 (1974)Google Scholar
2. Feigl, F.J., and Anderson, J.H., J.Phys.Chem. Solids 31, p. 575 (1970)Google Scholar
3. Griscom, D.L., Phys.Rev. B 20, p. 1823 (1979)Google Scholar
4. Griscom, D.L., Phys.Rev. B 22, p. 4192 (1980)Google Scholar
5. Friebele, E.J., Griscom, D.L., and Siegel, G.H. Jr., J. Appl. Phys. 45, p. 3424 (1984)Google Scholar
6. Poumellec, B., and Kherbouche, F., J.Phys.III, 6, 1595 (1996).Google Scholar
7. Chiodini, N., Meinardi, F., Morazzoni, F., Paleari, A., Scotti, R., and Spinolo, G., Phys.Rev. B 58, (1998) in press.Google Scholar
8. Smith, M.J. Hampden, Wark, T. A., Rheingold, A., and Huffman, J.C., Can.J.Chem. 69, 121 (1991).Google Scholar
9. Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J.Non-Cryst Solids 100, 65 (1988).Google Scholar
10. Katijar, R.S., Dawson, P., Hargreaves, M.M., and Wilkinson, G.R., J. Phys. C 4, 2421 (1971).Google Scholar
11. Robertson, J., J. Phys. C 12, 4767 (1979).Google Scholar
12. Griscom, D.L., Nucl.Instrum.Methods Phys.Res. B 1, 481 (1984).Google Scholar
13. Mizokawa, Y., and Nakamura, S., Jpn.J.Appl.Phys. Part 2, 253 (1974).Google Scholar
14. Canevali, C., Chiodini, N., Nola, P. Di, Morazzoni, F., Scotti, R., and Bianchi, C.L., J. Mater. Chem., 7, 997 (1997).Google Scholar
15. Schirmer, O.F., and Scheffler, M., J.Phys.C:Solid State Phys. 15, L 645 (1982).Google Scholar