Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:46:27.710Z Has data issue: false hasContentIssue false

Transient Viscous Phase Reaction Sintered (Tvprs) Silicon Oxynitride Ceramics.

Published online by Cambridge University Press:  25 February 2011

Kevin P. Plucknett
Affiliation:
Dept. of Materials Science and Engineering, McMaster University, Hamilton, Ontario, CANADA
David S. Wilkinson
Affiliation:
Dept. of Materials Science and Engineering, McMaster University, Hamilton, Ontario, CANADA
Get access

Abstract

High density silicon oxynitride ceramics were fabricated by reaction-sintering a mixtureof silicon nitride and silica without the use of sintering aids. Precursor silicon nitride compacts were prepared by conventional means after which they were subjected to a lowtemperature oxidation heattreatment (∼1000ºC) producing a composite silicon nitride/silica compact. Oxidized compacts were then reaction-sintered in a nitrogen atmosphere at temperatures between 1400 and 1800ºC using a range of protective ‘powder-bed’ compositions. A ‘powder-bed’ comprising a mixture of boron nitride, silicon nitride and silica was found to be most effective in preventing decomposition and subsequent weight loss. Nearly complete reactive transformation to silicon oxynitride was observed under optimised sintering conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haung, Z.K., Greil, P. and Petzow, G., Ceram. Int., 10 [1] 1417 (1984).Google Scholar
2. Mitomo, M., Ono, S., Asami, T. and Kang, S.-J.L., Ceram. Int., 15 [6] 345–50 (1989).Google Scholar
3. Billy, M., Boch, P., Dumazeau, C., Glandus, J.C. and Goursat, P., Ceram. Int., 7 [1] 1318 (1981).Google Scholar
4. Ohashi, M., Tabata, H. and Kamazaki, S., J. Mat. Sci. Lett., 7 [4] 339–40 (1988).Google Scholar
5. Ohashi, M., Kamazaki, S. and Tabata, H., J. Am. Ceram. Soc., 74 [1] 109–14 (1991).Google Scholar
6. Lewis, M.H., Butler, N.D. and Reed, C.J., Mat. Sci. Eng., 71 8794 (1985).Google Scholar
7. O'Meara, C. and Sjoberg, J., pp. 647663 in Sintering of Advanced Ceramics, Ceramic Transactions 7, American Ceramic Society, Westerville, OH, 1990.Google Scholar
8. Plucknett, K.P. and Lewis, M.H., Unpublished Research.Google Scholar
9. Larker, R. and Hermansson, L., pp. 375381 in Proceedings of the International Conference on Hot-Isostatic Pressing, Lulea, Sweden, (1988).Google Scholar
10. Larker, R., J. Am. Ceram. Soc., 75 [1] 6266 (1992).Google Scholar
11. Tuersley, I.P., Leng-Ward, G. and Lewis, M.H., pp. 231246 in Advanced Engineering with Ceramics, British Ceramic Society Proc. No. 46, The Institute of Ceramics, Stoke on Trent, UK, 1990.Google Scholar
12. Plucknett, K.P. and Lewis, M.H., Ceram. Eng. Sci. Proc., 13 [9-10] 991999 (1992).Google Scholar
13. Plucknett, K.P. and Wilkinson, D.S., U.S. Patent Application, (July 1st 1992).Google Scholar
14. Porz, F. and Thummler, F., J. Mat. Sci., 19 [4] 1283–95 (1984).Google Scholar
15. Thummler, F. and Grathwohl, G., pp. 547555 in Progress in Nitrogen Ceramics, Martinus-Nijhoff (1983).Google Scholar
16. Laczka, M., J. Am. Ceram. Soc., 74 [8] 19161921 (1991).Google Scholar
17. Bihuniak, P.P., J. Am. Ceram. Soc., 66 [10] C.188189 (1983).Google Scholar
18. Wagstaff, F.E. and Richards, K.J., J. Am. Ceram. Soc., 48 [7] 382383 (1965).Google Scholar
19. Zeng, J., Tanaka, I., Miyamoto, Y., Yamada, O. and Niihara, K., J. Am. Ceram. Soc., 75 [1] 195200 (1992).Google Scholar
20. Wada, H., Wang, M.-J. and Tien, T.Y., J. Am. Ceram. Soc., 71 [10] 837840 (1988).Google Scholar