Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T11:33:16.595Z Has data issue: false hasContentIssue false

Transmission electron microscopy analysis of secondary phases in Cu2ZnSnS4 thin film solar cells

Published online by Cambridge University Press:  28 July 2014

Wei Li
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Ziheng Liu
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Jian Chen
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Fangyang Liu
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Xiaojing Hao*
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
*
*Corresponding author: Xiaojing Hao; E-mail address:xj.hao@unsw.edu.au
Get access

Abstract

Secondary phases are likely to occur in the Cu2ZnSnS4 (CZTS) films since the CZTS is thermodynamically stable in only a narrow region of the phase diagram. The CZTS solar cell performance can be influenced by the existence and precipitated position of secondary phases. Therefore, locally investigate the distribution of secondary phases is important to further improve CZTS solar cell efficiency. In this study, two different kinds of transmission electron microscopy imaging techniques, bright field scanning TEM image (BF-STEM) and High-angle annular dark-field (HAADF) image, are applied to analyze the distribution of secondary phases. Due to the atomic number differences between CZTS and secondary phases, secondary phases are evident in the HAADF images. Therefore, HAADF image is a more powerful and convenient method to analyze the secondary phases than the BF-STEM image.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Todorov, T.K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D.B., Advanced Energy Materials, 3, 3438 (2012).10.1002/aenm.201200348CrossRefGoogle Scholar
Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E., Miazza, C., Solar Energy Materials and Solar Cells, 90, 29522959 (2006).10.1016/j.solmat.2006.06.002CrossRefGoogle Scholar
Ito, K., Nakazawa, T., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 27, 20942097 (1988).10.1143/JJAP.27.2094CrossRefGoogle Scholar
Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S., Solar Energy Materials and Solar Cells, 95, 14211436 (2011).10.1016/j.solmat.2010.11.028CrossRefGoogle Scholar
Mendis, B.G., Goodman, M.C.J., Major, J.D., Taylor, A.A., Durose, K., Halliday, D.P., Journal of Applied Physics, 112, 124508 (2012).10.1063/1.4769738CrossRefGoogle Scholar
Nagoya, A., Asahi, R., Kresse, G., Journal of Physics-Condensed Matter, 23, 404203 (2011).10.1088/0953-8984/23/40/404203CrossRefGoogle Scholar
Fairbrother, A., Garcia-Hemme, E., Izquierdo-Roca, V., Fontane, X., Pulgarin-Agudelo, F.A., Vigil-Galan, O., Perez-Rodriguez, A., Saucedo, E., Journal of the American Chemical Society, 134, 80188021 (2012).10.1021/ja301373eCrossRefGoogle Scholar
Schurr, R., Hölzing, A., Jost, S., Hock, R., Voβ, T., Schulze, J., Kirbs, A., Ennaoui, A., Lux-Steiner, M., Weber, A., Kötschau, I., Schock, H.W., Thin Solid Films, 517, 24652468 (2009).10.1016/j.tsf.2008.11.019CrossRefGoogle Scholar
Amal, M.I., Kim, K.H., Thin Solid Films, 534, 144148 (2013).10.1016/j.tsf.2013.02.028CrossRefGoogle Scholar
Chalapathy, R.B.V., Jung, G.S., Ahn, B.T., Solar Energy Materials and Solar Cells, 95, 32163221 (2011).10.1016/j.solmat.2011.07.017CrossRefGoogle Scholar
Fairbrother, A., Fontané, X., Izquierdo-Roca, V., Espíndola-Rodríguez, M., López-Marino, S., Placidi, M., Calvo-Barrio, L., Pérez-Rodríguez, A., Saucedo, E., Solar Energy Materials and Solar Cells, 112, 97105 (2013).10.1016/j.solmat.2013.01.015CrossRefGoogle Scholar
Junhee, H., Seung Wook, S., Myeong Gil, G., Hyeok, K. Jin, Yong, L. Jeong, Nanotechnology, 24, 095706 (2013).Google Scholar
Wätjen, J.T., Scragg, J.J., Ericson, T., Edoff, M., Platzer-Björkman, C., Thin Solid Films, 535, 3134 (2013).10.1016/j.tsf.2012.11.079CrossRefGoogle Scholar
Wei, L., Jian, C., Chang, Y., Fangyang, L., Xiaojing, H., Nanotechnology, 25, 195701 (2014).Google Scholar
Su, Z., Sun, K., Han, Z., Cui, H., Liu, F., Lai, Y., Li, J., Hao, X., Liu, Y., Green, M.A., Journal of Materials Chemistry A, 2, 500509 (2014).10.1039/C3TA13533KCrossRefGoogle Scholar
Rudawski, N.G., Jones, K.S., Morarka, S., Law, M.E., Elliman, R.G., J. Appl. Phys., 105, (2009).10.1063/1.3091395CrossRefGoogle Scholar
Williams, D.B., Carter, C.B., in, Springer, 2009.Google Scholar
Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S., Progress in Photovoltaics: Research and Applications, 21, 7276 (2011).10.1002/pip.1174CrossRefGoogle Scholar
Timo Wätjen, J., Engman, J., Edoff, M., Platzer-Björkman, C., Applied Physics Letters, 100, 173510 (2012).10.1063/1.4706256CrossRefGoogle Scholar