Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:47:58.398Z Has data issue: false hasContentIssue false

Transport Properties in Ionic Media

Published online by Cambridge University Press:  21 March 2011

A.-L. Rollet
Affiliation:
Laboratoire LI2C, UniversitéPierre et Marie Curie Bat. F case 51, 4 place Jussieu, 75252 Paris cedex 05, Francefax: 33144273834
M. Jardat
Affiliation:
Laboratoire LI2C, UniversitéPierre et Marie Curie Bat. F case 51, 4 place Jussieu, 75252 Paris cedex 05, Francefax: 33144273834
J.-F. Dufrêche
Affiliation:
Laboratoire LI2C, UniversitéPierre et Marie Curie Bat. F case 51, 4 place Jussieu, 75252 Paris cedex 05, Francefax: 33144273834
P. Turq*
Affiliation:
Laboratoire LI2C, UniversitéPierre et Marie Curie Bat. F case 51, 4 place Jussieu, 75252 Paris cedex 05, Francefax: 33144273834
D. Canet
Affiliation:
Laboratoire de méthodologie RMN, Université Henri Poincaré BP 239, 54056 Vandoeuvre-les-Nancy, France
*
Get access

Abstract

Transportcoe[ ]cients in charged media exhibit strong variations, according to the conditions of displacement of the particles. Electrical transport, characterized by the simultaneous displacement of positive and negative charges in opposite directions obeys Ohm's law, but its variation with concentration (non-ideality), depends on several types of interactions, whose time of establishment varies from picosecond to nanosecond. Several diffusion processes can occur: mutual diffusion, where ions move simultaneously in the same direction, keeping local elec- troneutrality, and self diffusion where individual ionic particles move separately. The variation of diffusion coefficients with concentration dependson non-ideality factors analogous to those occuring in conductance, and their experimental evidence is facilitated b y the availability of experimental tec hniquesowing different characteristic times of observation. This phenomenon is particularly noticeable for self-diffsuion coefficients, where the dynamical processes can be observed from the picosecond range (neutron quasi-elastic scattering), to millisecond (NMR) and to hour scale (radiactive tracers). The results are especially enhanced for porous charged media like ion exchanging membranes (nafions).

Those results are be explained here theoretically in the framework of contin uous solv en t model theories (brownian dynamics) and experimentally in the study of self-diffusion in nafion membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Turq, P., Lantelme, F., Friedman, H.L. Brownian dynamics: its application to ionic solutions. J. Chem. Phys., 1977, vol 66, No 7, p 30393044.Google Scholar
[2] Allen, M.P., Tildesley, D.J. Computer Simulation of Liquids. Oxford Science Publications, 1987.Google Scholar
[3] Jardat, M., Bernard, O., Turq, P., Kneller, G.R. J. Chem. Phys., 1999, vol 110, No 16, p 79937999.Google Scholar
[4] Jardat, M., Durand-Vidal, S., Turq, P., Kneller, G.R. Brownian dynamics J. Mol. Liq., 2000, vol 85, p 4555.Google Scholar
[5] Ermak, D.L. J. Chem. Phys., 1975, vol 62, p 4189.Google Scholar
[6] Rossky, P.J., Doll, J.D., Friedman, H.L. J. Chem. Phys., 1978, vol 54, p 1086.Google Scholar
[7] Durand-Vidal, S., Simonin, J.P., Turq, P., Bernard, O. J. Phys. Chem., 1995, vol 94, p 6733.Google Scholar
[8] Gebel, G., Loppinet, B. Ionomers: characterisation, theory and applications. Schlick, S. Ed., CRC Press: Boca Raton, FL, 1996, chapitre 5.Google Scholar
[9] Hsu, W.Y., Gierke, T.D., J. Membrane Sci., 1983, vol 13, p 307.Google Scholar
[10] Bée, M. Quasi-elastic neutron scattering: principles and application in solid state chemistry, biology and materials science. Hilger, Adam Ed., Bristol and Philadelphia, 1988.Google Scholar
[11] Johnson, C.S. Jr, Encyclopaedia of NMR, Harris, G. Ed., Wiley Press.Google Scholar
[12] , Canetet al. J. Magn. Reson., 1989, vol 81, p 1.Google Scholar
[13] , Dupeyreet al. J. Magn. Reson., 1991, vol 95, p 581.Google Scholar
[14] Mitra, P.P., Sen, P.N., Schwartz, L.M., Le, Doussal P. Phys. Rev. Lett., 1992, vol 68(24), p 3555.Google Scholar
[15] Latour, L.L., Mitra, P.P., Kleinberg, R.L., Sotak, C.H. J. Magn. Reson., 1993, vol 101(A), p 342346.Google Scholar
[16] Rollet, A.-L., Simonin, J.-P., Turq P. Phys. Chem. Chem. Phys., 2000, vol 2(5), p 1029.Google Scholar
[17] Rollet, A.-L., Simonin, J.-P., Turq, P. Gebel, G. submitted to J. Polym. Sci. Polym. Phys. Ed.Google Scholar