Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:53:14.798Z Has data issue: false hasContentIssue false

Transport Studies by Steady-State and Transient Photocarrier Grating Methods

Published online by Cambridge University Press:  16 February 2011

R. Schwarz
Affiliation:
Technical University of Munich, Physics Department, D-85747 Garching, Germany
F. Wang
Affiliation:
Technical University of Munich, Physics Department, D-85747 Garching, Germany
D. Schuster
Affiliation:
Fachhochschule Regensburg, D-93049 Regensburg, Germany
Get access

Abstract

An overview is given on the time and carrier density range covered by steady-state and transient photocarrier grating experiments which are commonly used to determine ambipolar transport parameters. In addition to the optically-detected transient grating method we discuss some details of a new version of the transient grating Method, the electrically-detected transient grating technique (EDTG) applied to hydrogenated Amorphous and microcrystalline silicon films. Numerical simulation shows that the diffusion coefficient is time and intensity dependent as expected for dispersive transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vaitkus, S., Jarasiunas, K., Gaubas, E., Jonikas, L., Pranaitis, R., and Subacius, L., IEEE J. Quant. Electr. QE-22, 1298 (1986).CrossRefGoogle Scholar
2. Komuro, S., Aoyagi, Y., Segawa, Y., Namba, S., Masuyama, A., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 43, 968 (1983).CrossRefGoogle Scholar
3. Eichler, H. J., Günther, P., and Pohl, D.W., Laser Induced Dynamic Gratings, Springer-Verlag, Berlin/Heidelberg 1986.CrossRefGoogle Scholar
4. Ritter, D., Zeldov, E., and Weiser, K., Phys. Rev. B 38, 8296 (1988).CrossRefGoogle Scholar
5. Wang, F., Ph.D. thesis, Technical University of Munich, 1994.Google Scholar
6. Petrauskas, M., Kolenda, J., Galeckas, A., Schwarz, R., Wang, F., Muschik, T., Fischer, T., and Weinert, H., Mat. Res. Soc. Symp. Proc. 258, 553 (1992).CrossRefGoogle Scholar
7. Pipoz, P., Wälchli, N., Beck, H., and Shah, A. V., J. Non-Cryst. Solids 164–166, 525 (1993).CrossRefGoogle Scholar
8. Furlan, J., IEEE Trans. on Electr. Dev. 39, 448 (1992).CrossRefGoogle Scholar
9. Haridim, M., Zelikson, M., and Weiser, K., J. Non-Cryst. Solids 164–166, 493 (1993).CrossRefGoogle Scholar
10. Young, E.C., Partial Differential Equations, Allyn and Bacon, 1972.Google Scholar