Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:53:03.874Z Has data issue: false hasContentIssue false

Two-Dimensional Excitons in Siloxene

Published online by Cambridge University Press:  25 February 2011

M. S. Brandt
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
M. Rosenbauer
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
M. Stutzmann
Affiliation:
Max-Planck-Institut für Festkürperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
Get access

Abstract

The luminescence properties of two different modifications of siloxene are studied with photoluminescence excitation spectroscopy (PLE) und optically detected magnetic resonance (ODMR). The luminescence of as prepared siloxene, which consists of isolated silicon planes, is resonantly excited at the bandgap, indicating a direct bandstructure. The observation of Δm = ±2 transitions in ODMR shows that triplet excitons contribute to the luminescence process. In contrast, annealed siloxene consisting primarily of six-membered silicon rings shows a PLE typical of a material with an indirect bandgap. The ODMR signal of annealed siloxene and of porous silicon show the same Gaussian line with a typical width of 400 G, which can arise from strong dipolar coupling of an electron and a hole ≈ 5Å apart.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Wöhler, F., Lieb. Ann. 127, 257 (1863).CrossRefGoogle Scholar
[2] Schott, G., Z. Chemie (Leipzig) 2, 194 (1962).Google Scholar
[3] Hengge, E. and Scheffier, G., Monatshefte Chemie 95, 1450 (1964).CrossRefGoogle Scholar
[4] Kautsky, H. and Herzberg, G., Z. anorg. Chemie 139, 135 (1924).CrossRefGoogle Scholar
[5] Weiss, A., Beil, G., and Meyer, H., Z. Naturforsch. 35b, 25 (1979).Google Scholar
[6] Dahn, J. K. et al. , Bull. Am. Phys. Soc. 38, 157 (1993).Google Scholar
[7] Rosenbauer, M., Molinas-Mata, P., Bahringer, M., Stutzmann, M., Zegenhagen, J., and Cardona, M., Bull. Am. Phys. Soc. 38, 157 (1993).Google Scholar
[8] Stutzmann, M., Weber, J., Brandt, M. S., Fuchs, H. D., Rosenbauer, M., Deak, P., Hapner, A., and Breitschwerdt, A., Adv. Sol. State Phys. 32, 179 (1992).CrossRefGoogle Scholar
[9] Deak, P., Rosenbauer, M., Stutzmann, M., Weber, J., and Brandt, M. S., Phys. Rev. Lett. 69, 2531 (1992).CrossRefGoogle Scholar
[10] Holzenkimpfer, E., Richter, F. W., Stuke, J., and Voget-Grote, U., J. Non-Cryst. Solids 32, 327 (1979).CrossRefGoogle Scholar
[11] Kesteren, H. W. van, Cosman, E. C., Greidanus, F. J. A. M., Dawson, P., Moore, K. J., and Foxon, C. T., Phys. Rev. Lett. 61, 129 (1988).CrossRefGoogle Scholar
[12] Glaser, E., Trombetta, J. M., Kennedy, T. A., Prokes, S. M., Glembocki, O. J., Wang, K. L., and Chern, C. H., Phys. Rev. Lett. 65, 1247 (1990).CrossRefGoogle Scholar
[13] Morigaki, K. and Yoshida, M., J. Non-Cryst. Solids 90, 139 (1987).CrossRefGoogle Scholar
[14] Lowe, A. J. and Cavenett, B. C., Phil. Mag. B 57, 243 (1988).CrossRefGoogle Scholar
[15] Boulitrop, F., Phys. Rev. B 28, 6192 (1983).CrossRefGoogle Scholar
[16] Brandt, M. S. and Stutzmann, M., Appl. Phys. Lett. 81, 2569 (1992).CrossRefGoogle Scholar
[17] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).CrossRefGoogle Scholar
[18] Brandt, M. S., Fuchs, H. D., Hdpner, A., Rosenbauer, M., Stutzmann, M., Weber, J., Cardona, M., and Queisser, H. J., MRS Symp. Proceed. 262, 849 (1992).CrossRefGoogle Scholar