Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T18:39:30.789Z Has data issue: false hasContentIssue false

Ultrafast Defect Manipulation with Optical Anisotropy in Fused Silica

Published online by Cambridge University Press:  31 January 2011

Yasuhiko Shimotsuma
Affiliation:
yshimotsu@yahoo.co.jpyshimo@collon1.kuic.kyoto-u.ac.jp
Masaaki Sakakura
Affiliation:
masa@collon1.kuic.kyoto-u.ac.jp, Kyoto University, Innovative Collaboration Center, Kyoto, Japan
Peter G. Kazansky
Affiliation:
pgk@orc.soton.ac.uk, University of Southampton, Optoelectronics Research Centre, Southampton, United Kingdom
Kiyotaka Miura
Affiliation:
kmiura@collon1.kuic.kyoto-u.ac.jp, Kyoto University, Department of Material Chemistry, Kyoto, Japan
Kazuyuki Hirao
Affiliation:
hirao@bisco1.kuic.kyoto-u.ac.jp, Kyoto University, Department of Material Chemistry, Kyoto, Japan
Get access

Abstract

We report the evidence that the oxygen defects induced by focusing an intense infrared femtosecond laser pulse in fused silica can be self-organized by the interference pattern between photon and electron plasma wave. Self-organized nanostructure with a sub-wavelength modulation in refractive index exhibits form birefringence which is rewritable and directionally-controllable. Intriguingly, such optical anisotropy, which indicates a remarkable non-reciprocity, has initially evolved from residual birefringence originated from internal stress distribution due to local heating followed by structural change, regardless of interpulse time. This anisotropic light-matter interaction could be interpreted in terms of an asymmetric relation between light polarization and pulse front tilt. Apart from fundamental understanding of self-organization mechanism, the direction of encoded birefringence can introduce an entirely new concept for rewritable optical storage beyond the diffraction limit of light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stamm, C. Kachel, T. Pontius, N. Mitzner, R. Quast, T. Holldack, K. Khan, S. Lupulescu, C. Aziz, E. F. Wietstruk, M. Dürr, H. A., and Eberhardt, W. Nature Mater. 6, 740 (2007).Google Scholar
2 Stapelfeldt, H. and Seideman, T. Rev. Mod. Phys. 75, 543 (2003).Google Scholar
3 Gattas, R. R. and Mazur, E. Nature Photonics 2, 219 (2008).Google Scholar
4 Birngruber, R. Puliafito, C. Gawande, A. Lin, W. Z. Schoenlein, R. and Fujimoto, J. IEEE J. Quant. Electron. 23, 1836 (1987).Google Scholar
5 Davis, K. M. Miura, K. Sugimoto, N. and Hirao, K. Opt. Lett. 21, 1729 (1996).Google Scholar
6 Juodkazis, S. Nishimura, K. Tanaka, S. Misawa, H. Gamaly, E. G. Luther-Davies, B., Hallo, L. Nicolai, P. and Tikhonchuk, V. T. Phys. Rev. Lett. 96, 166101 (2006).Google Scholar
7 Shimotsuma, Y. Kazansky, P. G. Qiu, J. and Hirao, K. Phys. Rev. Lett. 91, 247705 (2003).Google Scholar
8 Bhardwaj, V. R. Simova, E. Rajeev, P. P. Hnatovsky, C. Taylor, R. S. Rayner, D. M. and Corkum, P. B. Phys. Rev. Lett. 96, 057404 (2006).Google Scholar
9 Goodenough, J. B. Nature 404, 821 (2000).Google Scholar
10 Kan, D. Terashima, T. Kanda, R. Masuno, A. Tanaka, K. Chu, S. Kan, H. Ishizumi, A. Kanemitsu, Y. Shimakawa, Y. and Takano, M. Nature Mater. 4, 816 (2005).Google Scholar
11 Kazansky, P. G. Yang, W. Bricchi, E. Bovatsek, J. Arai, A. Shimotsuma, Y. Miura, K. and Hirao, K. Appl. Phys. Lett. 90, 151120 (2007).Google Scholar
12 Mikkelsen, J. C. Jr. , Appl. Phys. Lett. 45, 1187 (1984).Google Scholar
13 Vanagas, E. Ye, J. Y. Li, M. Miwa, M. Juodkazis, S. and Misawa, H. Appl. Phys. A81, 725 (2005).Google Scholar
14 Sakakura, M. Terazima, M. Shimotsuma, Y. Miura, K. and Hirao, K. Opt. Express 15, 5674 (2007).Google Scholar