Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T01:23:36.021Z Has data issue: false hasContentIssue false

Visible Luminescence from ZnO Nanostructures

Published online by Cambridge University Press:  01 February 2011

An-jen Cheng
Affiliation:
chenga1@auburn.edu, Auburn Univeristy, Electrical and Computer Engineering, 200 Broun Hall Auburn University, Auburn, AL, 36849, United States, 334-844-1892
Dake Wang
Affiliation:
wangd1@auburn.edu, Auburn Univeristy, Department of Physics and Laboratory for Nanophotonics, Auburn, AL, 36849, United States
Hee Won Seo
Affiliation:
kingmama@empal.com, Auburn Univeristy, Department of Physics and Laboratory for Nanophotonics, Auburn, AL, 36849, United States
Minseo Park
Affiliation:
park@physics.auburn.edu, Auburn Univeristy, Department of Physics and Laboratory for Nanophotonics, Auburn, AL, 36849, United States
Yonhua Tzeng
Affiliation:
tzengyo@auburn.edu, Auburn Univeristy, Alabama Micro/Nano Science and Technology Center, Department of Electrical and Computer Engineering, Auburn, AL, 36849, United States
Get access

Abstract

Room temperature photoluminescence (PL) spectra from zinc oxide (ZnO) nanostructures were studied. ZnO samples were produced via thermal chemical vapor deposition (thermal-CVD) and a variety of ZnO nanostructures were synthesized by adjusting the oxygen content during the growth process. All samples exhibit a sharp and strong ultra-violet near-band-edge (NBE) emission at about 3.18 eV. The visible emission from the samples deposited under an oxygen-deficient condition were dominated by blue-green band emission at 2.34 eV. The intensity of the blue-green band was greatly reduced (so-called green band free) for the ZnO deposited at the center of the wafer while strong violet-blue emission bands and broad bands at yellow-orange-red range were collected from the ZnO grown along the edge of the wafer. We believe that the spatial inhomogeniety was caused by turbulent gas flow in the reaction chamber, which resulted in different local oxygen concentration. Origin of visible luminescence from ZnO nanostructures will be discussed and a model to explain the observed visible luminescence process will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Djurisic, A. B.. Choy, W. C. H., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W. Gundu, Rao, T.K., Chan, W. K., Lui, H. F., and Suryu, C., Adv. Func. Mater. 14, 856 (2004)Google Scholar
2. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996). K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996)Google Scholar
3. van Dijken, A., Meulenkamp, E. A., Vanmaekelberg, D. and Meijerink, A., J. Phys. Chem. B 104, 1715 (2000)Google Scholar
4. Liu, X., Wu, X. H., Cao, H. and Chang, R. P. H., J. Appl. Phys. 95, 3141 (2004).Google Scholar
5. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., and Yang, P., Angew. Chem., Int. Ed. 42, 3031 (2003).Google Scholar
6. Studenikin, S. A., Golego, N., and Cocivera, M., J. Appl. Phys. 84, 2287 (1998).Google Scholar
7. Wu, L., Wu, Y., Pan, X., and Kong, F., Opt. Mater. 28, 418 (2006).Google Scholar
8. Sekiguchi, T., Miyashita, S., Obara, K., Shishido, T., and Sakagami, N., J. Cryst. Growth 214/215, 72 (2000).Google Scholar
9. Harada, Y. and Hashimoto, S., Phys. Rev. B 68, 045421 (2003).Google Scholar
10. Shalish, I., Temkin, H. and Narayannamurti, V., Phys. Rev. B 69, 245401 (2004).Google Scholar
11. Li, D., Leung, Y. H., Djurišić, A. B., Liu, Z. T., Xie, M. H., Shi, S. L., Xu, S. J. and Chan, W. K., Appl. Phys. Lett. 85, 1601 (2004).Google Scholar
12. Wang, D., Sathitsuksanoh, N., Cheng, Anjen, Tzeng, Y. H., Seo, H. W., Tin, C.-C., Bozack, M. J., Williams, J. R., and Park, M., J. Appl. Phys. 99, 113509 (2006).Google Scholar
13. Xu, P. S., Sun, Y. M., Shi, C. S., Xu, F. Q., and Pan, H. B., Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003).Google Scholar
14. Korsunska, N. E., Borkovska, L. V., Bulakh, B. M., Khomenkova, L. Yu., Kushnirenko, V. I. and Markevich, I. V., J. Lumin. 733, 102 (2003).Google Scholar
15. Bylander, E., J. Appl. Phys. 49, 1188 (1978).Google Scholar
16. Lauer, R. B., J. Phys. Chem. Solids 34, 249 (1973).Google Scholar
17. Ohtomo, A. et al., Appl. Phys. Lett. 77, 2204 (2000)Google Scholar
18. Gaspar, C., Costa, F., and Monteiro, T., J. Mater. Sci.: Mater. Electron. 12, 269 (2001).Google Scholar