Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:18:30.187Z Has data issue: false hasContentIssue false

Xe Precipitates in Aluminum

Published online by Cambridge University Press:  01 February 2011

Robert C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439, USA
Stephen E. Donnelly
Affiliation:
Institute for Materials, University of Salford, Greater Manchester M5 4WT, UK
Ian Morrison
Affiliation:
Institute for Materials, University of Salford, Greater Manchester M5 4WT, UK
Charles W. Allen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439, USA
Kazuo Furuya
Affiliation:
National Institute for Materials Science, 3–13 Sakura, Tsukuba 305, Japan
Minghui Song
Affiliation:
National Institute for Materials Science, 3–13 Sakura, Tsukuba 305, Japan
Kazutaka Mitsuishi
Affiliation:
National Institute for Materials Science, 3–13 Sakura, Tsukuba 305, Japan
Ulrich Dahmen
Affiliation:
National Center for Electron Microscopy, LBNL, Berkeley, CA 94720, USA
Get access

Abstract

Real space, high-resolution transmission electron microscopy observations of Xe confined in nanometer size faceted cavities in Al yield information on both the inert gas and the matrix in which it is confined. At room temperature, Xe in such cavities can be liquid or an fcc solid. In larger cavities, Xe within can undergo melting and recrystallization. The Al surface energy can be deduced from the largest Xe nanocrystal at 300 K by setting the corresponding calculated Laplace pressure equal to the equilibrium pressure for melting of Xe, obtained from empirical bulk compression data. These surface energy values are 1.05 J m-2 for {111} facets and 1.10 Jm-2 for {200} facets. Because of the weak interactions, these values correspond to the surface tensions for Al at 300 K.

At room temperature, fluid Xe confined in small faceted cavities in aluminum has up to three ordered layers of Xe atoms at the Al interface. Conceptually in a three-dimensionally confined system of sufficiently small size, complete three-dimensional ordering of the fluid may occur. Molecular dynamics simulations have revealed that such ordering would result in fluid Xe confined to a small tetragonal volume solidifying as a body-centered cubic phase on compression.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 von Felde, A., Fink, J., Müller-Heinzerling, T., Pflüger, J., Scheerer, B., and Linker, G., Physics Review Letters 53, 922 (1984).Google Scholar
2 Templier, C., Garem, H., Desoyer, J. C., and Delafond, J., Scripta Metallurgica 20, 1705 (1986).Google Scholar
3 Donnelly, S. E. and Rossouw, C. J., Science 230, 1272 (1985).Google Scholar
4 Donnelly, S. E., Rad. Effects 90, 47 (1985).Google Scholar
5 Templier, C., Garem, H., Riviere, J. P., and Delafond, J., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 18, 24 (1986).Google Scholar
6 Bonissent, A. and Mutaftschiev, B., Phil. Mag. A 35, 67 (1977).Google Scholar
7 Cahn, J. W. and Kikuchi, R., Phys. Rev. B 31, 4300 (1985).Google Scholar
8 Laird, B. B. and Haymet, D. J., Chem. Rev. 92, 1819 (1992).Google Scholar
9 Spaepen, F., Solid State Phys. 47, 1 (1994).Google Scholar
10 Plischke, M. and Henderson, D., J. Chem. Phys. 84, 2846 (1986).Google Scholar
11 Israelachvili, J. N., in Intermolecular Forces and Surface Forces (Academic Press, CA, 1992), p. 261.Google Scholar
12 Huisman, W. J. and e. al., Nature 390, 379 (1997).Google Scholar
13 Yu, C.-J., Richter, G., Datta, A., Durbin, M. K., and Dutta, P., Phys. Rev. Lett. 82, 2326 (1999).Google Scholar
14 Furuya, K., Ishikawa, N., and Allen, C. W., Journal of Microscopy 194, 152 (1999).Google Scholar
15 Lucasson, P., in Fundamental Aspects of Radiation damage in Metals, edited by Robinson, J. M. T. and Young, F. W. (National Tecnical Information Service, Gatlinburg, TN, USA, 1975), Vol. 1, p. 42.Google Scholar
16 Lucasson, P. G. and Walker, R. M., Physics Review B 127, 485 (1962).Google Scholar
17 Furuya, K., Mitsuishi, K., Song, M. H., and Saito, T., Journal of Electron Microscopy 48, 511 (1999).Google Scholar
18 Allen, C. W., Birtcher, R. C., Donnelly, S. E., Song, M., Mitsuishi, K., Furuya, K., and Dahmen, U., Philosophical Magazine Letters 83, 57 (2003).Google Scholar
19 Johnson, E., Johansen, A., Dahmen, U., Chen, S., and Fujii, T., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 304, 187 (2001).Google Scholar
20 Mitsuishi, K., Song, M., Furuya, K., Allen, C. W., Birtcher, R. C., and Dahmen, U., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 206, 109 (2003).Google Scholar
21 Allen, C. W., Birtcher, R. C., Donnelly, S. E., Furuya, K., Ishikawa, N., and Song, M., Applied Physics Letters 74, 2611 (1999).Google Scholar
22 Birtcher, R. C., Donnelly, S. E., Song, M., Furuya, K., Mitsuishi, K., and Allen, C. W., Physical Review Letters 83, 1617 (1999).Google Scholar
23 Lahr, P. H. and Eversole, W. G., J. Chem. and Engr. Data 7, 42 (1962).Google Scholar
24 Tyson, W. R. and Miller, W. A., Surf. Sci. 62, 267 (1977).Google Scholar
25 Westmacott, K. H., Smallman, R. E., and Dodson, P. S., J. Metal. Sci. 2, 177 (1968).Google Scholar
26 Mac, Tempas, Total Resolution, Berkeley, CA.Google Scholar
27 Donnelly, S. E., Birtcher, R. C., Allen, C. W., Morrison, I., Furuya, K., Song, M. H., Mitsuishi, K., and Dahmen, U., Science 296, 507 (2002).Google Scholar
28 Schmidt, M. and Löwen, H., Phys. Rev. E 55, 7228 (1997).Google Scholar
29 Kegel, W. K., Reiss, H., and Lekkerkerker, H. N. W., Phys. Rev. Lett. 83, 5298 (1999).Google Scholar
30 Pizzini, S., Roberts, K. J., Pythian, W. J., English, C. A., and Greaves, G. N., Phil. Mag. Lett. 61, 223 (1990).Google Scholar