Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T10:17:42.417Z Has data issue: false hasContentIssue false

XPS Method to Study the Effect of Heat Treatments and Environment on the Electric Dipole Formation at Metal/High-κ Dielectric Interface

Published online by Cambridge University Press:  31 January 2011

Andrei Zenkevich
Affiliation:
a.zenkevich@mephi.ru, Moscow Engineering Physics institute, Dept. of Solid State Physics and Nanosystems, Moscow, Russian Federation
Yuri Lebedinski
Affiliation:
lebedinski@mephi.ru, Moscow Engineering Physics institute, Analytical laboratory, Moscow, Russian Federation
Yuri Matveyev
Affiliation:
y.matveev@gmail.com, Moscow Engineering Physics institute, Dept. of Solid State Physics and Nanosystems, Moscow, Russian Federation
Vladimir Tronin
Affiliation:
vntronin@mephi.ru, Moscow Engineering Physics institute, Dept. of Molecular Physics, Moscow, Russian Federation
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) technique is employed in situ to quantify changes in the electric dipole formed at the metal/dielectric interface. The proposed method is valid in the particular case of discontinuous metal overlayer in contact with dielectric, and allows one to model metal gate effective work function evolution of metal-oxide-semiconductor (MOS) stack following its treatments in different environments. The obtained results on Au / dielectric (dielectric=HfO2, LaAlO3) corroborate the model that the oxygen vacancies generated in dielectric contribute to the effective work function changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G.D., Wallace, R.M. and Anthony, J.A., J. Appl. Phys. 89, 52435275 (2001).Google Scholar
2 Hobbs, C., Fonseca, L., Dhandapani, V., Samavedam, S., Taylor, B., Grant, J., Dip, L., Triyoso, D., Hegde, R., Gilmer, D., Garcia, R., Roan, D., Lovejoy, L., Rai, R., Hebert, L., Tseng, H., White, B. and Tobin, P., Symposium on VLSI Technology Digest, 910 (2003).Google Scholar
3 Yeo, Yee-Chia, Ranade, P., Tsu-Jae King and Chenming Hu, IEEE Electron. Dev. Lett. 23, 342344 (2002).Google Scholar
4 Koyama, M., Kamimuta, Y., Ino, T., Kancko, A., Inumiya, S., Eguchi, K., Takayanagi, M., and Nishiyama, A. and Tech. Dig., Int. Electron Devices Meet., 499 (2004).Google Scholar
5 Afanasev, V., Houssa, M., Stesmans, A., and Heyns, M. M., J. Appl. Phys. 91, 3079 (2002).Google Scholar
6 Robertson, J., Sharia, O. and Demkov, A. A., App. Phys. Lett. 91, 132912 (2007).Google Scholar
7 Lebedinskii, Yu., Zenkevich, A. and Gusev, E.P., J. Appl. Phys. 101, 074504 (2007).Google Scholar
8 Cartier, E., McFeely, F. R., Narayanan, V., Jamison, P. *, Linder, B. P., Copel, M., Paruchuri, V. K., Basker, V.S., Haight, R., Lim, D., Carruthers, R., Shaw, T., Steen, M., Sleight, J., Rubino, J., Deligianni, H., Guha, S., Jammy, R. and Shahidi, G., Symposium on VLSI Technology Digest, 230 (2005).Google Scholar
9 Xiong, K., Robertson, J. and Clark, S.J., Microelectron. Eng. 85, 6569 (2008).Google Scholar