No CrossRef data available.
Published online by Cambridge University Press: 12 July 2019
This is a copy of the slides presented at the meeting but not formally written up for the volume.
It is preferable for a number of reasons to resolve existing problems with atomic force microscopy (AFM) use instead of simply resorting to dynamic light scattering (DLS), optical or electron microscopy (SEM/TEM). Parameters involving direct measurements of the 3rd dimension, such as height, surface roughness and volume, are possible only with AFM. The range of examples of great scientific interest includes but not limited to visualization and quantitative measurements of single-wall carbon nanotubes, colloidal gold, polymer particles, quantum dots, oxides, liposomes and nanoemultions. Imaging can be performed in intermediate environment such as water, buffer solution or gas. A tip artifact or a tip dilation, the phenomenon specific to AFM, manifests itself in a broadening of the lateral dimensions of surface topography. Interestingly, the vertical resolution of AFM is not affected by the finite size of the probe. The false metrology parameters could be generated that reflect the convolution of the tip geometry and the geometry of the object being imaged, rather than the object morphology. We propose that the long-standing problem of tip deconvolution can be solved by scanning a pre-characterized nano-sphere prior to imaging unknown particles. Not only does particle characterization using AFM provide a resolution comparable to or greater than that of SEM/TEM/DLS, it also retains the capacity for both 3-D visualization and direct height and volume measurements. Because AFM individual particle characterization is more productive, non-intrusive and easier to use than electron microscopy, our solution to the problem of tip dilation represents an important contribution to several rapidly-growing fields of science and technology.