Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:00:54.830Z Has data issue: false hasContentIssue false

AlGaAs Surface Reconstruction after Cl2 Chemical Etch and Ultra High Vacuum Anneal

Published online by Cambridge University Press:  22 February 2011

M. Hong
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. P. Mannaerts
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
L. H. Grober
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
F. A. Thiel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. S. Freund
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We report attaining (3x2) surface reconstruction with streaky reflection high energy electron diffraction (RHEED) patterns on Al0.4Ga0.6As after in-situ Cl2 chemical etch and ultra high vacuum (UHV) anneal. Secondary ion-mass spectrometry (SIMS) analysis at the regrown/etched Al0.4Ga0.6 As interface reveals impurities of O and C in the level of (5±1) × 1012 cm-2 and (3±1) × 1012 cm-2, respectively. These impurity levels are 10 times less than those of Al0.4Ga0.6 As after in-situ electron cyclotron resonance (ECR) plasma etch and UHV anneal without Cl2 chemical etch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choand, A.Y. and Panish, M. B., J. Appl. Phys. 43, 5118, 1972.Google Scholar
2. Cho, A. Y., J. Appl. Phys. 41, 2780, 1970; 42, 2074, 1971.Google Scholar
3. Chang, L. L., Esaki, L., Howard, W. E., Ludeke, R., and Schul, G., J. Vac. Sci. Technol. 10, 855, 1973.Google Scholar
4. Cho, A. Y., Thin Solid Films 100, 291, 1983.Google Scholar
5. Saito, J. and Kondo, K., J. Appl. Phys. 67, 6274, 1990.Google Scholar
6. Takamori, A., Sugata, S., Asakawa, K., Miyauchi, E., and Hashimoto, H., Jpn. J. Appl. Phys. 26, L142, 1987.Google Scholar
7. Suemune, I., Kunitsugu, Y., Kan, Y., and Yamanishi, M., Appl. Phys. Lett. 55, 760, 1989.Google Scholar
8. Hong, M., Freund, R. S., Choquette, K. D., Luftman, H. S., Mannaerts, J. P., and Wetzel, R. C., Appl. Phys. Lett. 62, 2658 (1993).Google Scholar
9. Hong, M., Mannaerts, J. P., Grober, L., Chu, S. N. G., Luftman, H. S., Choquette, K. D., and Freund, R. S., J. Appl. Phys. 75, 3105, 1994.Google Scholar
10. Choquette, K. D., Hong, M., Chu, S. N. G., Luftman, H. S., Mannaerts, J. P., Wetzel, R. C., and Freund, R. S., Appl. Phys. Lett. 62, 735, 1993.Google Scholar
11. Grober, L. H., Hong, M., Mannaerts, J. P., Freund, R. S., Luftman, H. S., and Chu, S. N. G., J. Vac. Sci. Technol. 12(2), Mar/Apr 1994.Google Scholar
12. Hong, M., Chu, S. N. G., Mannaerts, J. P., and Grober, L. H., unpublished results.Google Scholar