Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T22:07:08.049Z Has data issue: false hasContentIssue false

Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Czang-Ho Lee
Affiliation:
chlee@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
Andrei Sazonov
Affiliation:
asazonov@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, ON, N2L 3G1, Canada
Mohammad R. E. Rad
Affiliation:
esmaeili@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, ON, N2L 3G1, Canada
G. Reza Chaji
Affiliation:
reza@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, ON, N2L 3G1, Canada
Arokia Nathan
Affiliation:
anathan@venus.uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, ON, N2L 3G1, Canada
Get access

Abstract

We report on directly deposited plasma-enhanced chemical vapor deposition (PECVD) nanocrystalline silicon (nc-Si:H) ambipolar thin-film transistors (TFTs) fabricated at 260 °C. The ambipolar operation is achieved adopting Cr metal contacts with high-quality nc-Si:H channel layer, which creates highly conductive Cr silicided drain/source contacts, reducing both electron and hole injection barriers. The n-channel nc-Si:H TFTs show a field-effect electron mobility (meFE) of 150 cm2/Vs, threshold voltage (VT) ~ 2 V, subthreshold slope (S) ~0.3 V/dec, and ON/OFF current ratio of more than 107, while the p-channel nc-Si:H TFTs show a field-effect hole mobility (mhFE) of 26 cm2/Vs, VT ~ -3.8 V, S ~0.25 V/dec, and ON/OFF current ratio of more than 106. Complementary metal-oxide-semiconductor (CMOS) logic integrated with two ambipolar nc-Si:H TFTs shows reasonable transfer characteristics. The results presented here demonstrate that low-temperature nc-Si:H TFT technology is feasible for total integration of active-matrix TFT backplanes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, C. H., Sazonov, A., and Nathan, A., Appl. Phys. Lett. 86, 222106–1 (2005); Virtual J. Nanoscale Science & Technology 11, Issue 22 (2005).Google Scholar
2. Cheng, I.C. and Wagner, S., Appl. Phys. Lett. 80, 440 (2002).Google Scholar
3. Lee, C. H., Stryahilev, D., Tao, S., and Nathan, A., IEEE Electron Device Lett. 26, 637 (2005).Google Scholar
4. Chen, Y. and Wagner, S., Appl. Phys. Lett. 75, 1125 (1999).Google Scholar
5. Jang, M., Kim, Y., Shin, J., Lee, S., and Park, K., Appl. Phys. Lett. 84, 741 (2004).Google Scholar
6. Itoh, A., Saitoh, M., and Asada, M., Jpn. J. Appl. Phys. 39, 4757 (2000).Google Scholar
7. Rishton, S. A., Ismail, K., Chu, J. O., Chan, K. K., and Lee, K. Y., J. Vac. Sci. Technol. B 15, 2795 (1997).Google Scholar
8. Lin, H. C., Yeh, K. L., Huang, R. G., Lin, C. Y., and Huang, T. Y., IEEE Electron Device Lett. 22, 179 (2001).Google Scholar
9. Schön, J. H., Berg, S., Kloc, Ch., and Batlogg, B., Science 287, 1022 (2000).Google Scholar
10. Anthopoulos, T. D., Leeuw, D. M. de, Cantatore, E., Tanase, C., Hummelen, J. C., and Blom, P. W. M., Appl. Phys. Lett. 85, 4205 (2004).Google Scholar
11. Matsumura, M. and Nara, Y., J. Appl. Phys. 51, 6443 (1980).Google Scholar
12. Neudeck, G. W., Bare, H. F., and Chung, K. Y., IEEE Trans. Electron Devices 34, 344 (1987).Google Scholar
13. Meitine, M. and Sazonov, A., Mater. Res. Soc. Symp. Proc. 769, H6.6.1 (2003).Google Scholar
14. Luysberg, M., Hapke, P., Carius, R., and Finger, F., Philos. Mag. A 75, 31 (1997).Google Scholar
15. Kovsarian, A. and Shannon, J. M., J. Electron. Mater. 27, 1268 (1998).Google Scholar
16. Schlesinger, T. E., Cammarata, R. C., and Prokes, S. M., Appl. Phys. Lett. 59, 449 (1991).Google Scholar
17. Bouabellou, A., Halimi, R., Mirouh, K., Labbani, R., Djebien, R., and Mosser, A., Thin Solid Films 383, 296 (2001).Google Scholar
18. Lee, C. H., Stryahilev, D., and Nathan, A., J. Vac. Sci. Technol. A 22, 991 (2004).Google Scholar
19. Sze, S. M., Physics of Semiconductor Devices 2end. (John Wiley & Sons, New York, 1981), chap. 8.Google Scholar
20. Greve, D. W., Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems (Prentice Hall, New Jersey, 1998), chap. 7.Google Scholar
21. Lee, C. H., Sazonov, A., and Nathan, A., J. Vac. Sci. Technol. A 24, May/Jun (2006) (in press).Google Scholar