Published online by Cambridge University Press: 01 February 2011
The Pulsed PECVD technique involves modulating the standard 13.56 MHz RF plasma, in the kHz range. This allows an increase in the electron density during the ‘ON’ cycle, while in the ‘OFF’ cycle neutralizing the ions responsible for dust formation in the plasma. In this work, we report the increase of i-layer growth rate and silane gas utilization rate (GUR) for amorphous Si p-i-n solar cells grown in a large area (30 cm × 40 cm) single chamber deposition system. The i-layer growth rate of 5.4 Å/sec with a GUR of >15% has been achieved, which shows a device efficiency of 8.3% (almost same as of our conventional PECVD grown a-Si:H solar cell with ilayer growth rate of ∼1 Å/sec). We also deposited microcrystalline Si p-i-n devices using the Pulsed PECVD technique. The crystallite orientation of the films changes from a random to a (220) orientation near the microcrystalline-to-amorphous transition. The effects of crystallite orientation, grain boundaries and ion bombardment during growth on the solar cell performances are investigated. An efficiency of 4.8% for single junction μc-Si:H p-i-n device has been achieved for the i-layer thickness of 0.9 μm.