Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:08:14.507Z Has data issue: false hasContentIssue false

Amorphous Silicon Thin-Film Transistors with a Hot-Wire Active-Layer Deposited at High Growth Rate

Published online by Cambridge University Press:  15 February 2011

V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
J. Jarego
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
H. Silva
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
T. Silva
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
M. Boucinha
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
P. Brogueira
Affiliation:
Dept. of Physics, Instituto Superior Técnico, Lisbon, Portugal
J. P. Conde
Affiliation:
Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

High-quality thin film transistors (TFT) with hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire (HW) chemical vapor deposition as the active layer at growth rates above 20 Å/s are compared to TFTs with a-Si:H deposited by RF glow discharge at 1 Å/s. The subgap absorption measured by the constant photocurrent method and steady-state photoconductivity measured between source and drain are used to characterize the a-Si:H in the TFT. The activation energy of the dark conductivity is measured as a function of the gate voltage to obtain the position of the Fermi level. The effect of a bias stress on the TFT transfer curve is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R.A., Hvdrogenated Amorphous Silicon. Cambridge University Press, Cambridge, 1991.Google Scholar
2. Hautala, J., Saleh, Z., Westendorp, J.F.M., Meiling, H., Sherman, S. and Wagner, S., Mater. Res. Soc. Symp. Proc. 420, 83 (1996).Google Scholar
3. Matsumura, H., J. Appl. Phys. 65, 4396 (1989).Google Scholar
4. Doyle, J., Robertson, R., Lin, G.H., He, M.Z. and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
5. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
6. Meiling, H. and Schropp, R.E.I., Appl. Phys. Lett. 69, 1062 (1996).Google Scholar
7. Chu, V., Jarego, J., Silva, H., Silva, T., Reissner, M., Brogueira, P. and Conde, J.P., Appl. Phys. Lett., in press.Google Scholar
8. Conde, J.P., Brogueira, P., Castanha, R. and Chu, V., Mater. Res. Soc. Symp. Proc. 420, 357 (1996).Google Scholar
9. Park, H.R., Oh, D.S., Jang, J., Appl. Phys. Lett. 68, 3135 (1996);Google Scholar
Park, H.R., Oh, D.S., Jang, J., Soh, H.S., Solid State Comm. 97, 45 (1996).Google Scholar
10. Sherman, S., Wagner, S. and Gottscho, R.A., Appl. Phys. Lett. 69, 3242 (1996).Google Scholar
11. Slade, H., Shur, M.S., Deane, S.C., Hack, M., Appl. Phys. Lett. 69, 2560(1996).Google Scholar