Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T04:59:14.767Z Has data issue: false hasContentIssue false

AN ENZYMATIC METHOD TO OBTAIN A NEW SCAFFOLD FOR ENGINEERING CARTILAGE

Published online by Cambridge University Press:  15 February 2013

David M. Giraldo Gomez
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Ciudad Universitaria, Circuito Exterior s/n, C.P. 04510, México D.F., México.
Fernando Villegas Alvarez
Affiliation:
Departamento de Cirugía-Facultad de Medicina, UNAM, Ciudad Universitaria, Circuito Exterior s/n, C.P. 04510, México D.F., México.
David Garciadiego Cazares
Affiliation:
Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México Xochimilco N° 289, C.P. 14389, México D.F., México.
Avelina Sotres Vega
Affiliation:
Departamento de Investigación en Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias “Ismael Cossio Villegas”, Calzada de Tlalpan N° 4502, C.P. 14080, México D.F., México
Maria C. Piña Barba
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Ciudad Universitaria, Circuito Exterior s/n, C.P. 04510, México D.F., México.
Get access

Abstract

The purpose of this study was to achieve a descellularized scaffold from cartilage tissue, which can be used as xenograft for cartilage tissue regeneration.

This work presents the results obtained using one method to wash porcine trachea in order to remove cellular material from the extracellular matrix and to avoid the immune reaction using enzymatic detergent and partial enzymatic degradation with Deoxyribonuclease I (DNase-I), Ethylenediaminetetraacetic Acid (EDTA) and Trypsin. This treatment was qualitatively evaluated by Scanning Electron Microscopy (SEM), and H&E Stain (Histology), and quantitatively evaluated by DNA quantification. The thermal characterization of the descellularized scaffold was carried out using Termogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The type of collagen obtained from the scaffold was determined through SDS-PAGE electrophoresis. When using Enzymatic Treatment (ET) to wash trachea tissue, it is possible to obtain an acellular xenograft; this procedure has the potential to avoid rejection reactions of the xenograft.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Macchiarini, P, Jungebluth, P, Go, T, Asnaghi, MA, Rees, LE, Cogan, TA, et al. . Clinical transplantation of a tissue-engineered airway. Lancet 2008; 372 (9655): 2023–30.CrossRefGoogle ScholarPubMed
Cao, Y, Vacanti, JP, Paige, KT, Upton, J, Vacanti, CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997; 100(2): 297302.CrossRefGoogle ScholarPubMed
Ciorba, A, Martini, A. Tissue engineering and cartilage regeneration for auricular reconstruction. Int J Pediatr Otorhinolaryngol 2006;70(9): 1507–15.CrossRefGoogle ScholarPubMed
Vacanti, CA, Kim, W, Schloo, B, Upton, J, Vacanti, JP. Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 1994; 22(4): 485–8.CrossRefGoogle ScholarPubMed
Gong, YY, Xue, JX, Zhang, WJ, Zhou, GD, Liu, W, Cao, Y. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2011; 32: 22652273.CrossRefGoogle ScholarPubMed
Hui, TY, Cheung, KM, Cheung, WL, Chan, D, Chan, BP. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 2008; 29(22): 3201–12.CrossRefGoogle ScholarPubMed
Schmal, H, Mehlhorn, AT, Kurze, C, Zwingmann, J, Niemeyer, P, Finkenzeller, G, et al. . In vitro study on the influence of fibrin in cartilage constructs based on PGA fleece materials. Orthopade 2008; 37(5): 424–34.CrossRefGoogle Scholar
Piña, M.C., Romero, M., Tello, S., Labastida, A., Dávalos, K., Rosales, D., Fregoso, E., Colágena tipo I: Obtención y caracterización, XX Congreso Nacional de la Sociedad Polimérica de México, Guanajuato, México, 30 Oct. Al 2 de Nov. del 2007 pp. 459–463.Google Scholar
Gómez, Lizárraga K., Piña, Barba C., Rodríguez, Fuentes N., Romero, M., Obtención y caracterización de colágena tipo I a partir de tendón de bovino, Superficies y Vacío, Soc. Mex. de Ciencia y Tecnología de Superficies y Materiales 2011: 24(4), 137140.Google Scholar
María Luisa Del Prado Audelo, María del Carmen García de León Méndez, Cristina Piña Barba, Extracción de colágena tipo I de distintos tejidos biológicos y su caracterización, International Conference on Polymers and Advanced Materials POLYMAT-2011, Huatulco, México. 16–21 Octubre 2011.Google Scholar
Conconi, MT, De Coppi, P, Di Liddo, R, Vigolo, S, Zanon, GF, Parnigotto, PP, et al. . Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 2005; 18(6): 727–34.CrossRefGoogle ScholarPubMed
Gilbert, TW, Sellaro, TL, Badylak, SF. Decellularization of tissues and organs. Biomaterials 2006;27: 3675–83.Google ScholarPubMed
Macchiarini, P, Walles, T, Biancosino, C, Mertsching, H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg 2004; 128: 638–41.CrossRefGoogle ScholarPubMed
Walles, T, Giere, B, Hofmann, M, Schanz, J, Hofmann, F, Mertsching, H, et al. . Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg 2004;128: 900–6.CrossRefGoogle ScholarPubMed
Conconi, MT, De Coppi, P, Bellini, S, Zara, G, Sabatti, M, Marzaro, M, et al. . Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials 2005; 26: 2567–74.CrossRefGoogle ScholarPubMed
Jungebluth, P, Go, T, Asnaghi, A, Bellini, S, Martorell, J, Calore, C, et al. . Structural and morphological evaluation of a novel enzymatic detergent tissue engineered tracheal tubular matrix. J Thorac Cardiovasc Surg 2009; 138: 586–93.CrossRefGoogle Scholar
Baiguera, S, Jungebluth, P, Burns, A, Mavilia, C, Haag, J, De Coppi, P, Macchiarini, P. Tissue engineered human tracheas for in vivoimplantation. Biomaterials 2010; 31: 89318938.CrossRefGoogle Scholar
Especificaciones Técnicas para la Producción Cuidado y Uso de Animales de Laboratorio de la Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación 1999:Diciembre 6. Estados Unidos Mexicanos.Google Scholar
Giraldo Gomez David M. Tesis de Maestría. “Obtención de un andamio acelular para substitución de tráquea”. Universidad Nacional Autónoma de México, Diciembre, 2011.Google Scholar
Giraldo David Mauricio, Piña Maria Cristina, Villegas Fernando, Sotres Avelina. New Scaffold from cartilage tissue allows reproduction of trachea, International Conference on Polymers and Advanced Materials POLYMAT-2011, Huatulco, México. 16-21 Octubre 2011. Oral S1–38.Google Scholar
Chomczynski, P., Sacchi, N. Anal. Biochem. 1987;162, 156.CrossRefGoogle Scholar
Chomczynski, P. Biotechniques. 1993;15, 532.Google Scholar