Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:08:37.574Z Has data issue: false hasContentIssue false

Analysis of Proton Induced Defects in Cu(In,Ga)Se2 Thin-Film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Shirou Kawakita
Affiliation:
Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokoyama, Kanagawa 226-8503, Japan
Mitsuru Imaizumi
Affiliation:
Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
Koichi Kibe
Affiliation:
Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
Shinichi Yoda
Affiliation:
Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokoyama, Kanagawa 226-8503, Japan
Takeshi Ohshima
Affiliation:
Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
Hisayoshi Itoh
Affiliation:
Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
Masafumi Yamaguchi
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya, Aichi 468-8511, Japan e-mail:kawakita.shirou@jaxa.jp
Get access

Abstract

We investigated radiation-induced defects in CIGS solar cells with a solar-cell simulator to analyze the spectral response of the irradiated cells. The damage constant of the minority-carrier diffusion length of the cells irradiated with 1 MeV protons was determined to be 3.5 ×10-5. This analysis led to the relation between the defect introduction rate and proton energy, and was obtained using the same method, as was the defect annealing rate. This result agreed well with that estimated from an analysis of changes in short-circuit current degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramanathan, K., Contreras, M.A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J. and Duda, A., Prog. Photovolt, 11, 225 (2003)Google Scholar
2 Kawakita, S., Shimazaki, K., Imaizumi, M., Kuwajima, S., Yoda, S. Ohshima, T. and Itoh, H., Proceeding of 6th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba (2004) pp. 151154.Google Scholar
3 Kawakita, S., Imaizumi, M., Yamaguchi, M., Kushiya, K., Ohshima, T., Ito, H., and Matsuda, S., Jpn. J. Appl. Phys., 41, L797 (2002)Google Scholar
4 Imaizumi, M., Taylor, S. J., Yamaguchi, M., Ito, T., Hisamatsu, T., Matsuda, S., J. Appl. Phys., 85, 96 (1999)Google Scholar
5 Kushiya, K., Tachiyuki, M., Nagoya, Y., Fujimaki, A., Sang, B., Okumura, D., Satoh, M. and Yamase, O., Sol. Energy Mater. Sol. Cells, 67, 11 (2001)Google Scholar
6http://www.pv.unsw.edu.au/pc1d/Google Scholar
7 Champness, C. H., Proceeding of 29th IEEE Photovoltaic Specialist Conference, New Orleans (2002) pp.732735.Google Scholar
8 Weinert, K., Rau, U., Jasenek, A., Schock, H. W., Werner, J. H., Yakushev, M., Schattat, B. and Bolse, W., Proceeding of 17th European Photovoltaic Solar Energy Conference, Munchen (2001) pp.21672170.Google Scholar
9 Wertheim, G. K., Phys. Rev, 105, 1730 (1957)Google Scholar
10http://www.srim.org/Google Scholar
11 Jaseneck, A., Schock, H. W., Werner, J. H. and Rau, U., Appl. Phys Lett., 78, 2922 (2001)Google Scholar