Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T03:10:06.703Z Has data issue: false hasContentIssue false

Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy

Published online by Cambridge University Press:  11 February 2011

Georgii G. Samsonidze
Affiliation:
Department of Electrical Engineering and Computer Science
Riichiro Saito
Affiliation:
Department of Electronic Engineering, University of Electro-Communications CREST JST, Tokyo 182–8585, Japan
Ado Jorio
Affiliation:
Department of Physics Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123–970, Brazil
Antonio G. Souza Filho
Affiliation:
Department of Physics Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455–760, Brazil
Alexander Grüneis
Affiliation:
Department of Electronic Engineering, University of Electro-Communications
Marcos A. Pimenta
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123–970, Brazil
Gene Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A.
Mildred S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science Department of Physics
Get access

Abstract

The possible semiconducting device use of single wall carbon nanotubes (SWNTs) requires a technique for the determination of the exact structure of the nanotubes assembled in the device configuration. Raman spectroscopy has been established as a precise and non-destructive tool for the characterization of graphitic nanostructures. Double resonance theory, which is used to explain the dispersive nature of the Raman bands, has attracted much attention for its potential use for the characterization of the electronic and phonon spectra of these nanostructures. Dispersive features in the Raman spectra of low dimensional graphitic materials, such as carbon nanotubes, can be used to measure directly the anisotropy, or the trigonal warping effect, in the phonon dispersion relations about the hexagonal corner of the Brillouin zone (BZ) of graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G. and Saito, R., Carbon 40, 2043 (2002).Google Scholar
Jishi, R. A., Venkataraman, L., Dresselhaus, M. S. and Dresselhaus, G., Chem. Phys. Lett. 209, 77 (1993).Google Scholar
Grüneis, A., Saito, R., Kimura, T., Cançado, L. G., Pimenta, M. A., Jorio, A., Souza Filho, A. G., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B65, 155405 (2002).Google Scholar
Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).Google Scholar
Kawashima, Y. and Katagiri, G., Phys. Rev. B52, 10053 (1995).Google Scholar
Kawashima, Y. and Katagiri, G., Phys. Rev. B59, 62 (1999).Google Scholar
Tan, P. H., Tang, Y., Deng, Y. M., Li, F., Wei, Y. L. and Cheng, H. M., Appl. Phys. Lett. 75, 1524 (1999).Google Scholar
8. Tan, P. H., Hu, C. Y., Dong, J., Shen, W. C. and Zhang, B. F., Phys. Rev. B64, 214301 (2001).Google Scholar
9. Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S. and Endo, M., Phys. Rev. B59, R6585 (1999).Google Scholar
10. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
11. Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S. and Pimenta, M. A., Phys. Rev. Lett. 88, 027401 (2002).Google Scholar
12. Hafner, J. H., Cheung, C. L., Oosterkamp, T. H. and Lieber, C. M., J. Phys. Chem. B105, 743 (2001).Google Scholar
13. Souza Filho, A. G., Jorio, A., Samsonidze, Ge. G., Dresselhaus, G., Pimenta, M. A., Dresselhaus, M. S., Swan, A. K., Ünlü, M. S., Goldberg, B. B. and Saito, R., Phys. Rev. B66 (2002) in press.Google Scholar
14. Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., Grüneis, A., Cançado, L. G. and Pimenta, M. A., Jpn. J. Appl. Phys. 41, 4878 (2002).Google Scholar
15. Samsonidze, Ge. G., Saito, R., Jorio, A., Souza Filho, A. G., Grüneis, A., Pimenta, M. A., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. Lett. (2003) submitted. Google Scholar