Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:39:43.119Z Has data issue: false hasContentIssue false

Assemblies of Semiconductor and Metal Nanoparticles for Renewable Energy

Published online by Cambridge University Press:  15 March 2011

Marie Zabel Markarian
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon
Maysaa El-Harakeh
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon
Rabieh Makki
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon
Lara I. Halaoui*
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon
*
*Corresponding author: Lara.Halaoui@aub.edu.lb
Get access

Abstract

Nanostructured electrodes were assembled layer-by-layer from polyacrylate-capped Pt nanoparticles (<d>=2.5 ± 0.6 nm) in a cationic polyelectrolyte. Cyclic voltammetry revealed hydrogen adsorption peaks at the modified nanoparticles characteristic of an activated polycrystalline Pt surface, with a negative shift in the peak potentials indicating a less facile electro-adsorption relative to the polycrystalline electrode, possibly due to nanoparticle surface modification. Current-voltage measurements at multilayers of Pt nanoparticles in polyelectrolytes indicated the feasibility of charge hopping between the particles embedded in the insulating matrix. Such feasibility was also evidenced in photoluminescence quenching of Q-CdS dots (<d>=3.6 ± 0.5 nm) assembled in polyelectrolytes upon inserting Pt nanoparticles in the architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., El-Sayed, M. A., M. A. Science 272, 1924 (1996)Google Scholar
2. Ghannoum, S., Xin, Y., Jaber, J., Halaoui, L. I., Langmuir 19, 4804 (2003)Google Scholar
3. Halaoui, L. I., Langmuir 17, 7130 (2001)Google Scholar
4. Lvov, Yu., Decher, G., Sukhorukov, G., Macromolecules 26, 53965 (1993)Google Scholar
5. Watanabe, S., Regan, S. L.. S. L. J. Am. Chem. Soc. 116, 8855 (1994)Google Scholar
6. Feldheim, D. L., Grabar, K. C., Natan, M. J., Mallouk, T. E., J. Am. Chem. Soc. 118, 7640 (1996)Google Scholar
7. Kotov, A., Dékány, I., Fendler, J. H., J. Phys. Chem. 99, 13065 (1995)Google Scholar
8. Ostrander, J. W., Mamedov, A. A., Kotov, N. A., J. Am. Chem. Soc. 123, 1101 (2001)Google Scholar
9. Clavilier, J., In: Soriaga, M. P., ed. Electrochemical Surface Science Molecular Phenomena at Electrode Surfaces. ACS Symp Series, 1988, Vol 378, Ch 14, pp 201215, and refs therein.Google Scholar
10. Kinoshita, K., Ferrier, D. R., Stonehart, P., Electrochimica Acta 23, 45 (1978)Google Scholar
11. Halaoui, L. I., J. Electrochem. Soc. 150, E455 (2003)Google Scholar
12. Laurent, D., Schlenoff, J. B., Langmuir 13, 1552 (1997)Google Scholar