Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T01:07:52.515Z Has data issue: false hasContentIssue false

Atomic and Electronic Structure of Symmetric Tilt Boundaries in ZnO

Published online by Cambridge University Press:  21 March 2011

Fumiyasu Oba
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Shigeto R. Nishitani
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Hirohiko Adachi
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Isao Tanaka
Affiliation:
Department of Energy Science and Technology, Kyoto University, Sakyo, Kyoto 606-8501, Japan
Masanori Kohyama
Affiliation:
Department of Materials Physics, Osaka National Research Institute, Agency of Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
Shingo Tanaka
Affiliation:
Department of Materials Physics, Osaka National Research Institute, Agency of Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
Get access

Abstract

We have investigated the atomic and electronic structure of symmetric tilt boundaries in ZnO by a first-principles plane-wave pseudopotential method. Equilibrium boundary geometries with distorted- and dangling-bonds are obtained. Localized electronic states form mainly at the lower valence band and the bottom of the upper valence band owing to the bond disorder. However, the electronic states near the band gap are not significantly affected; deep states are not generated in the band gap. The small effects of the bond disorder on the electronic structure can be attributed to the band structure characteristic of ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clarke, D. R., J. Am. Ceram. Soc., 82, 485 (1999).Google Scholar
2. Matsuoka, M., Jpn. J. Appl. Phys., 10, 736 (1971).Google Scholar
3. Mukae, K., Tsuda, K. and Nagasawa, I., Jpn. J. Appl. Phys., 16, 1361 (1977).Google Scholar
4. Pike, G. E. and Seager, C. H., J. Appl. Phys., 50, 3414 (1979); G. E. Pike, S. R. Kurtz, P. L. Gourley, H. R. Philipp and L. M. Levinson, ibid., 57, 5512 (1985).Google Scholar
5. Yano, Y., Takai, Y., and Morooka, H., J. Mater. Res., 9, 112 (1994).Google Scholar
6. Fujitsu, S., Koumoto, K., and Yanagida, H., Solid State Ion., 32/33, 482 (1989).Google Scholar
7. Yodogawa, M., Ikuhara, Y., Oba, F., and Tanaka, I., Key Eng. Mater., 157–158, 24 (1999).Google Scholar
8. Oba, F., Tanaka, I., and Adachi, H., Jpn. J. Appl. Phys., Part 1 38, 3569 (1999).Google Scholar
9. Sonder, E., Austin, M. M., and Kinser, D. L., J. Appl. Phys., 54, 3566 (1983).Google Scholar
10. Fujitsu, S., Toyoda, H., and Yanagida, H., J. Am. Ceram. Soc., 70, C71 (1987).Google Scholar
11. Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn., 97, 1211 (1989).Google Scholar
12. Stucki, F. and Greuter, F., Appl. Phys. Lett., 57, 446 (1990).Google Scholar
13. Oba, F., Adachi, H., and Tanaka, I., J. Mater. Res., 15, 2167 (2000).Google Scholar
14. Chelikowsky, J. R. and Cohen, M. L., in Handbook on Semiconductors, edited by Landsberg, P. T. (Elsevier, 1992), vol. 1, p.59.Google Scholar
15. Perdew, J. P. and Zunger, A., Phys. Rev. B, 23, 5048 (1981).Google Scholar
16. Troullier, N. and Martins, J. L., Phys. Rev. B, 43, 1993 (1991).Google Scholar
17. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett., 48, 1425 (1982).Google Scholar
18. Oba, F., Tanaka, I., Nishitani, S. R., Adachi, H., Slater, B., and Gay, D. H., Philos. Mag. A, 80, 1567 (2000).Google Scholar
19. Lewis, G. V. and Catlow, C. R. A., J. Phys. C: Solid State Phys., 18, 1149 (1985).Google Scholar
20. Oba, F., Nishitani, S. R., Adachi, H., Tanaka, I., Kohyama, M., and Tanaka, S., Phys. Rev. B, 63, (2000), (in press).Google Scholar
21. Kiselev, A. N., Sarrazit, F., Stepantsov, E. A., Olsson, E., Claeson, T., Bondarenko, V. I., Pond, R. C. and Kiselev, N. A., Philos. Mag. A, 76, 633 (1997).Google Scholar
22. Merkle, K. L. and Smith, D. J., Phys. Rev. Lett., 59, 2887 (1987).Google Scholar
23. Schröer, P., Krüger, P., and Pollmann, J., Phys. Rev. B, 47, 6971 (1993).Google Scholar
24. Xu, Y. N. and Ching, W. Y., Phys. Rev. B, 48, 4335 (1993).Google Scholar
25. Srikant, V. and Clarke, D. R., J. Appl. Phys., 83, 5447 (1998).Google Scholar
26. Göpel, W., Pollmann, J., Ivanov, I., and Reihl, B., Phys. Rev. B, 26, 3144 (1982).Google Scholar
27. Vogel, D., Krüger, P., and Pollmann, J., Phys. Rev. B, 54, 5495 (1996).Google Scholar
28. Schröer, P., Krüger, P., and Pollmann, J., Phys. Rev. B, 49, 17092 (1994).Google Scholar
29. Kohyama, M., Phil. Mag. Lett., 79, 659 (1999).Google Scholar
30. Kohyama, M. and Yamamoto, R., Phys. Rev. B, 50, 8502 (1994).Google Scholar
31. Tarnow, E., Dallot, P., Bristowe, P. D., Joannopoulos, J. D., Francis, G. P. and Payne, M. C., Phys. Rev. B, 42, 3644 (1990).Google Scholar
32. Mo, S. D., Ching, W. Y. and French, R. H., J. Am. Ceram. Soc., 79, 627 (1996).Google Scholar
33. Dawson, I., Bristowe, P. D., Lee, M. H., Payne, M. C., Segall, M. D. and White, J. A., Phys. Rev. B, 54, 13727 (1996).Google Scholar
34. Mo, S. D., Ching, W. Y., Chisholm, M. F. and Duscher, G., Phys. Rev. B, 60, 2416 (1999).Google Scholar
35. Gambino, J. P., Kingery, W. D., Pike, G. E., Philipp, H. R. and Levinson, L. M., J. Appl. Phys., 61, 2571 (1987).Google Scholar
36. Winston, R. A. and Cordaro, J. F., J.Appl. Phys., 68, 6495 (1990).Google Scholar
37. Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn., 100, 1239 (1992).Google Scholar