Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:40:16.826Z Has data issue: false hasContentIssue false

Atomic Assembly of Giant Magnetoresistive Multilayers

Published online by Cambridge University Press:  21 March 2011

Haydn N.G. Wadley
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22903, U.S.A.
Xiaowang Zhou
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22903, U.S.A.
Robert A. Johnson
Affiliation:
Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22903, U.S.A.
Get access

Abstract

The emergence of metal multilayers that exhibit giant magnetoresistance (GMR) has led to new magnetic field sensors, and approaches for nonvolatile random access memories. Controlling the atomic scale structure across the many interfaces within these multilayers is central to improve the performance of these devices. However, the ability to manipulate atomic arrangements at this scale requires an understanding of the mechanisms that control heterometal film growth during vapor deposition. It is important to develop methods that enable prediction of the effects of deposition conditions upon this structure. Atomistic simulation approaches have been combined with deposition reactor models to achieve this. We have applied these approaches to analyze the atomic scale structure of sputter deposited CoFe/Cu/CoFe giant magnetoresistive multilayers similar to those used for magnetic field sensing. Significant intermixing is revealed at the CoFe-on-Cu interface, but not at the Cu-on-CoFe interface. Recent experiments verified these predictions. The insights provide a basis for the development of processes that inhibit thermally activated atomic diffusion while allowing the controlled use of the metal atom impact energy and inert gas ions to manipulate the structure of interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Baibich, M.N., Broto, J.M., Fert, A., F. Nguyen Van Dau, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472(1988).Google Scholar
2 Honda, S., Ohmoto, S., Imada, R., and Nawate, M., J. Magn. Magn. Mater. 126, 419(1993).Google Scholar
3 Parkin, S.S.P., Li, Z.G., and Smith, D.J., Appl. Phys. Lett. 58, 2710(1991).Google Scholar
4 Kools, J.C.S., J. Appl. Phys. 77, 2993(1995).Google Scholar
5 Meguro, K., Hirano, S., Jimbo, M., Tsunashima, S., and Uchiyama, S., J. Magn. Magn. Mater. 140–144, 601(1995).Google Scholar
6 Prinz, G.A., Science 282, 1660(1998).Google Scholar
7 Parkin, S.S.P., Bhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152(1991).Google Scholar
8 Butler, W.H., Zhang, X.G., Nicholson, D.M.C., and MacLaren, J.M., J. Magn. Magn. Mater. 151, 354(1995).Google Scholar
9 Levy, P.M., J. Magn. Magn. Mater. 140–144, 485(1995).Google Scholar
10 Nicholson, D.M.C., Butler, W.H., Zhang, X.G., MacLaren, J.M., Gurney, B.A., and Speriosu, V.S., J. Appl. Phys. 76, 6805(1994).Google Scholar
11 Nozieres, J.P., Speriosu, V.S., Gurney, B.A., Dieny, B., Lefakis, H., and Huang, T.C., J. Magn. Magn. Mater. 121, 386(1993).Google Scholar
12 Yang, Y.G., Johnson, R.A., and Wadley, H.N.G., Acta Mater. 45, 1455(1997).Google Scholar
13 Zhou, X.W., and Wadley, H.N.G., Surf. Sci. 431, 42(1999).Google Scholar
14 Zhou, X.W., and Wadley, H.N.G., Surf. Sci. 431, 58(1999).Google Scholar
15 Zhou, X.W., and Wadley, H.N.G., J. Appl. Phys. 87, 8487(2000).Google Scholar
16 Schmeusser, S., Rupp, G., and Hubert, A., J. Magn. Magn. Mater. 166, 267(1997).Google Scholar
17 Zhou, X.W., and Wadley, H.N.G., in preparation.Google Scholar
18 Zhou, X.W., Subha, S., and Wadley, H.N.G., in preparation.Google Scholar
19 Wadley, H.N.G., Zou, W., Zhou, X.W., Groves, J.F., Desa, S., Kosut, R., Abrahamson, E., Ghosal, S., Kozak, A., and Wang, D.X., Mat. Res. Soc. Symp. Proc. 538, 323(1999).Google Scholar
20 Zou, W., Wadley, H.N.G., Zhou, X.W., Brownell, D., Ghosal, S., and Kosut, R., submitted to JVST.Google Scholar
21 Daw, M.S., and Baskes, M.I., Phys. Rev. B 29, 6443(1984).Google Scholar
22 Wadley, H.N.G., Zhou, X.W., Johnson, R.A., and Neurock, M., Prog. Mater. Sci. 46, 329(2001).Google Scholar
23 Johnson, R.A., Phys. Rev. B 39, 12554(1989).Google Scholar
24 Johnson, R.E., in Energetic Charged-Particle Interactions with Atmospheres and Surfaces, Physics and Chemistry in Space Planetology, edited by Lanzerotti, L.J., Hill, M. and Stoffler, D. (Springer-Verlag, 19, Berlin, 1990) pp. 68.Google Scholar
25 Zhou, X.W., and Wadley, H.N.G., J. Appl. Phys. 84, 2301(1998).Google Scholar
26 Parrinello, M., and Rahman, A., J. Appl. Phys. 52, 7182(1981).Google Scholar
27 Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L., and Kelly, T.F., to be submitted to Acta Mater.Google Scholar
28 Zhou, X.W, and Wadley, H.N.G., J. Appl. Phys. 87, 553(2000).Google Scholar
29 Hylton, T.L., Coffey, K.R., Parker, M.A., and Howard, J.K., J. Appl. Phys. 75, 7058(1994).Google Scholar
30 Rupp, G., and Schuster, K., J. Magn. Magn. Mater. 121, 416(1993).Google Scholar
31 Zhou, X.W., and Wadley, H.N.G., submitted to J. Appl. Phys., 2001.Google Scholar
32 Zhurin, V.V., Kaufman, H.R., Kahn, J.R., and Hylton, T.L., J. Vac. Sci. Technol. A 18, 37(2000).Google Scholar
33 Hylton, T.L., Ciorneiu, B., Baldwin, D.A., Escorcia, O., Son, J., McClure, M.T., and Waters, G., in press.Google Scholar
34 Zou, W., Wadley, H.N.G., Zhou, X.W., Johnson, R.A., and Brownell, D., in Preparation.Google Scholar