Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T21:42:25.815Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of Metal Oxide Films on GaAs (100) surfaces

Published online by Cambridge University Press:  31 January 2011

Theodosia Gougousi
Affiliation:
gougousi@umbc.edu, UMBC, Physics, Baltimore, Maryland, United States
John W. Lacis
Affiliation:
jlacis1@umbc.edu, UMBC, Physics, Baltimore, Maryland, United States
Justin C Hackley
Affiliation:
jhackley@lps.umd.edu, UMBC, Physics, Baltimore, Maryland, United States
John Demaree
Affiliation:
jdemaree@arl.army.mil, Army Research Laboratory, Weapons & Materials Research Directorate, Aberdeen Proving Ground, Maryland, United States
Get access

Abstract

Atomic Layer Deposition is used to deposit HfO2 and TiO2 films on GaAs (100) native oxides and etched surfaces. For the deposition of HfO2 films two different but similar ALD chemistries are used: i) tetrakis dimethyl amido hafnium (TDMAHf) and H2O at 275°C and ii) tetrakis ethylmethyl amido hafnium (TEMAHf) and H2O at 250°C. TiO2 films are deposited from tetrakis dimethyl amido titanium (TDMATi) and H2O at 200°C. Rutherford Back Scattering shows linear film growth for all processes. The film/substrate interface is examined using x-ray Photoelectron Spectroscopy and confirms the presence of an “interfacial cleaning” mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
2 de Almeida, R. M.C. and Baumvol, I.J.R., Surface Science Reports 49, 1, (2003).Google Scholar
3 Robertson, J. and Falabretti, B., J. Appl. Phys. 100, 014111 (2006).Google Scholar
4 Lin, H.C., Yang, T., Sharifi, H., Kim, S.K., Xuan, Y., Shen, T., Mohammadi, S., and Ye, P.D. Appl. Phys. Lett. 91 (21) 212101 (2007).Google Scholar
5 Ye, P. D., Wilk, G. D., Yang, B., Kwo, J., G. Chu, S. N., Nakahara, S., Gossmann, H.-J. L., Mannaerts, J. P., Hong, M., Ng, K. K., and Bude, J. Appl. Phys. Lett. 83, 180 (2003).Google Scholar
6 Frank, M. M., Wilk, G. D., Starodub, D., Gustafsson, T., Garfunkel, E., .Chabal, Y. J. Grazul, J. and Muller, D. A. Appl. Phys. Lett. 86, 152904 (2005).Google Scholar
7 Huang, M. L., Chang, Y. C., Chang, C. H., Lee, Y. J., Chang, P., Kwo, J.,Wu, T. B. and Hong, M., Appl. Phys. Lett. 87, 252104 (2005).Google Scholar
8 Chang, C.-H., Chiou, Y.-K., Chang, Y.-C., Lee, K.-Y., Lin, T.-D., Wu, T.-B., Hong, M., and Kwo, J., Appl. Phys. Lett. 89, 242911 (2006).Google Scholar
9 Hinkle, C. L., Sonnet, A. M., Vogel, E. M., McDonnell, S., Hughes, G. J., Milojevic, M., Lee, B., Aguirre-Tostado, F. S., Choi, K. J., Kim, H. C., Kim, J., and Wallace, R. M., Appl. Phys. Lett. 92, 071901 (2008).Google Scholar
10 Chang, Y. C., Huang, M. L., Lee, K. Y., Lee, Y. J., Lin, T. D., Hong, M., Kwo, J., Lay, T. S., Liao, C. C., and Cheng, K.Y., Appl. Phys. Lett. 92, 072901 (2008).Google Scholar
11 Hackley, J.C., Demaree, J.D., and Gougousi, T., Appl. Phys. Lett. 92(16), 162902 (2008).Google Scholar
12 Shahrjerdi, D., Garcia-Gutierrez, D. I., Tutuc, E., and Banerjee, S. K., Appl. Phys. Lett. 92 (22), 223501, (2008).Google Scholar
13 Hackley, J.C., Gougousi, T., Demaree, J.D., J. Appl. Phys. 102, 034101 (2007).Google Scholar
14 Surdu-Bob, C.C., Saied, S.O., Sullivan, J.L., Appl. Surf. Sci. 183, 126 (2001).Google Scholar
15 Doolittle, L. R., Nucl. Instrum. Meth. B15, 227 (1986).Google Scholar
16 Hackley, J.C., Demaree, J.D., and Gougousi, T., J. Vac. Sci. Technol. A 25(5), 1235 (2008).Google Scholar
17 Marx, D., Asahi, H. Liu, X.F., Higashiwaki, M., Villaflor, A.B., Miki, K.,Yamamoto, K., Gonda, S., Shimomura, S., Hiyamizu, S. J. Crystal Growth 150, 155 (1995).Google Scholar
18 Asahi, H. Liu, X.F., Inoue, K., Marx, D., Asami, K., Miki, K., Gonda, S., J. Crystal Growth 145, 688 (1994).Google Scholar