Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T09:43:34.510Z Has data issue: false hasContentIssue false

Atomic-scale simulations of strain localization in a single-component three-dimensional model amorphous solid

Published online by Cambridge University Press:  26 February 2011

Yunfeng Shi
Affiliation:
yunfengs@umich.edu
Michael L Falk
Affiliation:
mfalk@umich.edu
Get access

Abstract

Molecular dynamics is used to simulate model non-crystalline solids described by a single-component Dzugutov system. The solids are produced by quenching equilibrium liquids at different cooling rates. These are then tested in uniaxial compression. Samples produced at high cooling rates exhibit homogenous deformation while samples quenched at low cooling rates exhibit localized deformation. Shear bands are shown to correspond to regions of depleted short-range order as determined by a Frank-Kasper criterion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnson, W. L., MRS Bull. 24, 42 (1999).Google Scholar
2 Schneider, S., Journal of Physics-Condensed Matter 13, 7723 (2001).Google Scholar
3 Li, J., Wang, Z. L., and Hufnagel, T. C., Phys. Rev. B 65, 144201 (2002).Google Scholar
4 Jiang, W. H. and Atzmon, M., Acta. Mater. 51, 4095 (2003).Google Scholar
5 Zetterling, F. H. M., Dzugutov, M., and Simdyankin, S. I., J Non-Cryst Solids 293, 39 (2001).Google Scholar
6 Jonsson, H. and Andersen, H. C., Phys. Rev. Lett. 60, 2295 (1988).Google Scholar
7 Reichert, H. et al. , Nature 408, 839 (2000).Google Scholar
8 Luo, W. K. et al. , Phys. Rev. Lett. 92, 145502 (2004).Google Scholar
9 Shi, Y. F. and Falk, M. L., Appl. Phys. Lett. 86, 011914 (2005).Google Scholar
10 Shi, Y. F. and Falk, M. L., Phys. Rev. Lett. 95, 095502 (2005).Google Scholar
11 Dzugutov, M., Phys. Rev. A 46, R2984 (1992).Google Scholar
12 Hoover, W. G., Phys. Rev. A 31, 1695 (1985).Google Scholar
13 Parrinello, M. and Rahman, A., J Appl Phys 52, 7182 (1981).Google Scholar
14 Parrinello, M. and Rahman, A., J. Chem. Phys. 76, 2662 (1982).Google Scholar
15 Dzugutov, M., Phys. Rev. Lett. 70, 2924 (1993).Google Scholar
16 Falk, M. L. and Langer, J. S., Phys. Rev. E. 57, 7192 (1998).Google Scholar
17 Roth, J. and Denton, A. R., Phys. Rev. E. 61, 6845 (2000).Google Scholar
18 Frank, F. C. and Kasper, J. S., Acta Crystallographica 11, 184 (1958).Google Scholar
19 Honeycutt, J. D. and Andersen, H. C., J. Phys. Chem. 91, 4950 (1987).Google Scholar