Published online by Cambridge University Press: 10 February 2011
The validity and predictive capability of continuum models of fracture rests on basic informations whose origin lies at the atomic scale. Examples of such crucial informations are, e.g., the explicit form of the cohesive law in the Barenblatt model and the shear-displacement relation in the Rice-Peierls-Nabarro model. Modem approaches to incorporate atomic-level information into fracture modelling require to increase the size of atomic-scale models up to millions of atoms and more; or to connect directly atomistic and macroscopic, e.g. finite-elements, models; or to pass information from atomistic to continuum models in the form of constitutive relations. A main drawback of the atomistic methods is the complexity of the simulation results, which can be rather difficult to rationalize in the framework of classical, continuum fracture mechanics. We critically discuss the main issues in the atomistic simulation of fracture problems (and dislocations, to some extent); our objective is to indicate how to set up atomistic simulations which represent well-posed problems also from the point of view of continuum mechanics, so as to ease the connection between atomistic information and macroscopic models of fracture.