Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T02:16:32.207Z Has data issue: false hasContentIssue false

Automated Indexing of Laue Images from Polycrystalline Materials

Published online by Cambridge University Press:  10 February 2011

Jin-Seok Chung
Affiliation:
Oak Ridge National Laboratory, Metals & Ceramics Division, Oak Ridge, TN 37830-6118
Gene E. Ice
Affiliation:
Oak Ridge National Laboratory, Metals & Ceramics Division, Oak Ridge, TN 37830-6118
Get access

Abstract

Third generation hard x-ray synchrotron sources and new x-ray optics have revolutionized x-ray microbeams. Now intense sub-micron x-ray beams are routinely available for x-ray diffraction measurement. An important application of sub-micron xray beams is analyzing polycrystalline material by measuring the diffraction of individual grains. For these measurements, conventional analysis methods will not work. The most suitable method for microdiffraction on polycrystalline samples is taking broad-bandpass or white-beam Laue images. With this method, the crystal orientation and non-isostatic strain can be measured rapidly without rotation of sample or detector. The essential step is indexing the reflections from more than one grain. An algorithm has recently been developed to index broad bandpass Laue images from multi-grain samples. For a single grain, a unique set of indices is found by comparing measured angles between Laue reflections and angles between possible indices derived from the x-ray energy bandpass and the scattering angle 2 theta. This method has been extended to multigrain diffraction by successively indexing points not recognized in preceding indexing iterations. This automated indexing method can be used in a wide range of applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yun, W. B., Lai, B., Legnini, D., Xiao, Y. H., Chrzas, J., Skulina, K. M., Bionta, R. M., White, V. and Cerrina, F., SPIE 1740, pp. 117129 (1992).Google Scholar
2. Bionta, R. M., Ables, E., Clamp, O., Edwards, O. D., Gabriele, P. C., Miller, K., Ott, L. L., Skulina, K. M., Tilley, R., Viada, T., Opt. Eng. 29, p. 576 (1990).Google Scholar
3. Underwood, J. H., Thompson, A. C., Kortright, J. B., Chapman, K. C., and Lunt, D., Rev. Sci. Inst. Abstract 67, p. 3359 (1996).Google Scholar
4. Yang, B. X., Rivers, M., Schildkamp, W., P. J. Eng, Rev. Sci. Inst. 66, p. 2278 (1995).Google Scholar
5. Bilderback, D. H., Hoffman, S. A., and Thiel, D. J., Science 263, p. 201 (1994).Google Scholar
6. Wang, P. C., III, G. S. Cargill, and Noyan, I. C., MRS Symp. Proc. 375, p. 247 (1995)Google Scholar
7. Piotrowski, D. P., Stock, S. R., Guvenilir, A., Haase, J. D. and Rek, Z. U., MRS Symp. Proc. 437, p. 125 (1996)Google Scholar
8. Stock, S. R., Guvenilir, A., Piotrowski, D. P. and Rek, Z. U., MRS Symp. Proc. 375, p. 275 (1995)Google Scholar
9. Yamamoto, N. and Sakata, S., Jpn. J. Appl. Phys. 34, p. L664 (1995).Google Scholar
10. Dingley, D. J. and Randle, V., J. Mater. Sci. 27, p. 4545 (1992).Google Scholar
11. Ravelli, R. B. G., Hezemans, A. M. F., Krabbendam, H. and Kroon, J., J. Appl. Cryst. 29, pp. 270278 (1996)Google Scholar
12. Wenk, H. R., Heidelbach, F., Chateigner, D. and Zontone, F., J. Synchrotron Rad. 4, pp. 95101 (1997)Google Scholar
13. Alain Soyer, laueX, This UNIX-based Laue simulation program is available from ftp.lmcp.jussieu.frin /pub/sincris/software/general/laueX/.Google Scholar