No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The potential application of epitaxial Si1−xGex, on Si in electronic and optoelectronic devices has led to an increased study of metal - Si1−xGex interaction and barrier height control technique. In this paper, we report the epitaxial growth of Si1−xGex on Si and the Schottky barrier formation processing. The Si1−xGex (x=0.17 and 0.20) layers were grown by rapid radiant heating, very low pressure chemical vapor deposition (VLPCVD). The crystal structure and epitaxial nature of the Si1−xGex, layers were studied by X-Ray diffraction. The value of full width at half maximum (FWHM) was found to be 0.34° for the as grown Si1−xGex (400) peak. The metal-Si1−xGex/Si Schottky diodes were formed by depositing Pd on Si1−xGex/Si at room temperature (RT=300K) and low temperature (LT=77K). The Schottky barrier heights and current transport mechanisms were determined by current-voltage-temperature (I-V-T) measurements. The interface property of Pd/ Si1−xGex/Si were studied as a function of metal deposition and post annealing temperatures.